GRB2(growth factor receptor bound protein 2)は、シグナル伝達に関与するアダプタータンパク質である。ヒトでは、GRB2タンパク質はGRB2遺伝子によってコードされている[5][6]

GRB2
PDBに登録されている構造
PDBオルソログ検索: RCSB PDBe PDBj
PDBのIDコード一覧

1AZE, 1BM2, 1BMB, 1CJ1, 1FHS, 1FYR, 1GCQ, 1GFC, 1GFD, 1GHU, 1GRI, 1IO6, 1JYQ, 1JYR, 1JYU, 1QG1, 1TZE, 1X0N, 1ZFP, 2AOA, 2AOB, 2H5K, 2HUW, 2VVK, 2VWF, 2W0Z, 3C7I, 3IMD, 3IMJ, 3IN7, 3IN8, 3KFJ, 3MXC, 3MXY, 3N7Y, 3N84, 3N8M, 3OV1, 3OVE, 3S8L, 3S8N, 3S8O, 2H46, 3WA4, 4P9V, 4P9Z, 5CDW

識別子
記号GRB2, ASH, EGFRBP-Grb3-3, MST084, MSTP084, NCKAP2, growth factor receptor bound protein 2
外部IDOMIM: 108355 MGI: 95805 HomoloGene: 1576 GeneCards: GRB2
遺伝子の位置 (ヒト)
17番染色体 (ヒト)
染色体17番染色体 (ヒト)[1]
17番染色体 (ヒト)
GRB2遺伝子の位置
GRB2遺伝子の位置
バンドデータ無し開始点75,318,076 bp[1]
終点75,405,709 bp[1]
遺伝子の位置 (マウス)
11番染色体 (マウス)
染色体11番染色体 (マウス)[2]
11番染色体 (マウス)
GRB2遺伝子の位置
GRB2遺伝子の位置
バンドデータ無し開始点115,534,871 bp[2]
終点115,599,423 bp[2]
RNA発現パターン
さらなる参照発現データ
遺伝子オントロジー
分子機能 protein domain specific binding
SH3 domain binding
プロテインキナーゼ結合
identical protein binding
neurotrophin TRKA receptor binding
protein phosphatase binding
血漿タンパク結合
ephrin receptor binding
insulin receptor substrate binding
epidermal growth factor receptor binding
phosphatidylinositol-4,5-bisphosphate 3-kinase activity
1-phosphatidylinositol-3-kinase activity
phosphoprotein binding
酵素結合
RNA結合
non-membrane spanning protein tyrosine kinase activity
phosphotyrosine residue binding
細胞の構成要素 エキソソーム
核小体
細胞質
核質
COP9シグナロソーム
ゴルジ体
細胞質基質
細胞核
cell-cell junction

Grb2-EGFR complex
エンドソーム
vesicle membrane
細胞膜
extrinsic component of cytoplasmic side of plasma membrane
高分子複合体
細胞内
生物学的プロセス T cell costimulation
Fc-gamma receptor signaling pathway involved in phagocytosis
branching involved in labyrinthine layer morphogenesis
MAPK cascade
epidermal growth factor receptor signaling pathway
fibroblast growth factor receptor signaling pathway
insulin receptor signaling pathway
receptor internalization
細胞間シグナル伝達
軸索誘導
positive regulation of reactive oxygen species metabolic process
cellular response to ionizing radiation
Fc-epsilon receptor signaling pathway
viral process
positive regulation of actin filament polymerization
signal transduction in response to DNA damage
negative regulation of epidermal growth factor receptor signaling pathway
leukocyte migration
regulation of MAPK cascade
anatomical structure formation involved in morphogenesis
老化
ERBB2 signaling pathway
phosphatidylinositol phosphate biosynthetic process
phosphatidylinositol-3-phosphate biosynthetic process
protein heterooligomerization
entry of bacterium into host cell
membrane organization
遊走
細胞分化
peptidyl-tyrosine autophosphorylation
regulation of cell population proliferation
自然免疫
Ras protein signal transduction
interleukin-15-mediated signaling pathway
positive regulation of protein kinase B signaling
分子機能制御
サイトカイン媒介シグナル伝達経路
positive regulation of Ras protein signal transduction
neurotrophin TRK receptor signaling pathway
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
UniProt
RefSeq
(mRNA)

NM_203506
NM_002086

NM_008163
NM_001313936
NM_001313937

RefSeq
(タンパク質)

NP_002077
NP_987102

NP_001300865
NP_001300866
NP_032189

場所
(UCSC)
Chr 17: 75.32 – 75.41 MbChr 17: 115.53 – 115.6 Mb
PubMed検索[3][4]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

GRB2は上皮成長因子受容体などの受容体に結合するタンパク質で、1つのSH2ドメインと2つのSH3ドメインを有する。2つのSH3ドメインは他のタンパク質のプロリンリッチ領域と直接的に相互作用して複合体形成へ差し向け、SH2ドメインはリン酸化されたチロシンを含む配列に結合する。GRB2遺伝子はCaenorhabditis elegansにおいてシグナル伝達経路に関与しているsem-5遺伝子と類似している。GRB2遺伝子には、異なるアイソフォームをコードする2種類の選択的スプライシングバリアントが発見されている[7]

機能

編集

GRB2は複数の細胞機能に必要不可欠な役割を果たしている。GRB2の機能の阻害によって、さまざまな生物種で発生過程が損なわれ、またさまざまな細胞種で形質転換や増殖が遮断される。GRB2は上皮成長因子受容体と、Rasやその下流のキナーゼであるERK1/2とを関連づける役割が最もよく知られている。一方で、GRB2はHER2の場合には他のキナーゼAKTに対して関連づける。このように、さまざまな受容体型チロシンキナーゼのシグナルがGRB2へ収束する可能性があるものの、これらのシグナルは必ずしも同じ下流キナーゼの活性化を引き起こすためにGRB2を利用しているわけではない[8]

ドメイン

編集

GRB2はSH2ドメインの両側にSH3ドメインが隣接した構成をしている[9]

GRB2のSH2ドメインは、受容体やアダプタータンパク質に存在するリン酸化チロシン(pY)含有モチーフに結合する。pY-X-N-X配列(Xは任意のアミノ酸)に対して選択的に結合するが、pY-(L/V)-N-(V/P)配列に対してより高い親和性で結合する[10]

N末端側のSH3ドメインはプロリンに富むペプチドに結合し、Rasのグアニンヌクレオチド交換因子であるSos英語版に結合することができる[11]

C末端側のSH3ドメインはP-X-X-X-Rモチーフを有するペプチドに結合し、GAB1英語版などのタンパク質への特異的結合を可能にしている[12]

相互作用

編集

GRB2は次に挙げる因子と相互作用することが示されている。

出典

編集
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000177885 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000059923 - Ensembl, May 2017
  3. ^ Human PubMed Reference:
  4. ^ Mouse PubMed Reference:
  5. ^ “Cloning of ASH, a ubiquitous protein composed of one Src homology region (SH) 2 and two SH3 domains, from human and rat cDNA libraries”. Proceedings of the National Academy of Sciences of the United States of America 89 (19): 9015–9. (Oct 1992). Bibcode1992PNAS...89.9015M. doi:10.1073/pnas.89.19.9015. PMC 50055. PMID 1384039. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC50055/. 
  6. ^ a b “The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling”. Cell 70 (3): 431–42. (Aug 1992). doi:10.1016/0092-8674(92)90167-B. PMID 1322798. 
  7. ^ Entrez Gene: GRB2 growth factor receptor-bound protein 2”. 2024年9月29日閲覧。
  8. ^ Tari, A. M.; Lopez-Berestein, G. (2001-10). “GRB2: a pivotal protein in signal transduction”. Seminars in Oncology 28 (5 Suppl 16): 142–147. doi:10.1016/s0093-7754(01)90291-x. ISSN 0093-7754. PMID 11706405. https://pubmed.ncbi.nlm.nih.gov/11706405. 
  9. ^ Yablonski, Deborah (2019). “Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses”. Frontiers in Immunology 10: 1704. doi:10.3389/fimmu.2019.01704. ISSN 1664-3224. PMC 6669380. PMID 31402911. https://pubmed.ncbi.nlm.nih.gov/31402911. 
  10. ^ Higo, Kunitake; Ikura, Teikichi; Oda, Masayuki; Morii, Hisayuki; Takahashi, Jun; Abe, Ryo; Ito, Nobutoshi (2013). “High resolution crystal structure of the Grb2 SH2 domain with a phosphopeptide derived from CD28”. PloS One 8 (9): e74482. doi:10.1371/journal.pone.0074482. ISSN 1932-6203. PMC 3787023. PMID 24098653. https://pubmed.ncbi.nlm.nih.gov/24098653. 
  11. ^ Ogura, Kenji; Okamura, Hideyasu (2013-10-09). “Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR”. Scientific Reports 3: 2913. doi:10.1038/srep02913. ISSN 2045-2322. PMC 6505672. PMID 24105423. https://pubmed.ncbi.nlm.nih.gov/24105423. 
  12. ^ Lock, L. S.; Royal, I.; Naujokas, M. A.; Park, M. (2000-10-06). “Identification of an atypical Grb2 carboxyl-terminal SH3 domain binding site in Gab docking proteins reveals Grb2-dependent and -independent recruitment of Gab1 to receptor tyrosine kinases”. The Journal of Biological Chemistry 275 (40): 31536–31545. doi:10.1074/jbc.M003597200. ISSN 0021-9258. PMID 10913131. https://pubmed.ncbi.nlm.nih.gov/10913131. 
  13. ^ “Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases”. The Journal of Biological Chemistry 277 (7): 4999–5007. (Feb 2002). doi:10.1074/jbc.M107430200. PMID 11741929. 
  14. ^ “The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr”. The Journal of Biological Chemistry 272 (52): 33260–70. (Dec 1997). doi:10.1074/jbc.272.52.33260. PMID 9407116. 
  15. ^ “Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites”. Genes & Development 8 (7): 783–95. (Apr 1994). doi:10.1101/gad.8.7.783. PMID 7926767. 
  16. ^ “Competitive binding assay of src homology domain 3 interactions between 5-lipoxygenase and growth factor receptor binding protein 2”. Analytical Biochemistry 230 (1): 108–14. (Sep 1995). doi:10.1006/abio.1995.1444. PMID 8585605. 
  17. ^ “5-Lipoxygenase contains a functional Src homology 3-binding motif that interacts with the Src homology 3 domain of Grb2 and cytoskeletal proteins”. The Journal of Biological Chemistry 269 (39): 24163–8. (Sep 1994). doi:10.1016/S0021-9258(19)51063-8. PMID 7929073. 
  18. ^ “BLNK: a central linker protein in B cell activation”. Immunity 9 (1): 93–103. (Jul 1998). doi:10.1016/S1074-7613(00)80591-9. PMID 9697839. 
  19. ^ “Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-alpha”. European Journal of Immunology 31 (7): 2126–34. (Jul 2001). doi:10.1002/1521-4141(200107)31:7<2126::aid-immu2126>3.0.co;2-o. PMID 11449366. 
  20. ^ “BLNK is associated with the CD72/SHP-1/Grb2 complex in the WEHI231 cell line after membrane IgM cross-linking”. European Journal of Immunology 30 (5): 1326–30. (May 2000). doi:10.1002/(sici)1521-4141(200005)30:5<1326::aid-immu1326>3.0.co;2-q. PMID 10820378. 
  21. ^ “SLP-65: a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation”. The Journal of Experimental Medicine 188 (4): 791–5. (Aug 1998). doi:10.1084/jem.188.4.791. PMC 2213353. PMID 9705962. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213353/. 
  22. ^ a b “Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts”. The Journal of Cell Biology 144 (5): 1019–31. (Mar 1999). doi:10.1083/jcb.144.5.1019. PMC 2148201. PMID 10085298. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2148201/. 
  23. ^ “Specific inhibition of FGF-induced MAPK activation by the receptor-like protein tyrosine phosphatase LAR”. Oncogene 19 (19): 2346–53. (May 2000). doi:10.1038/sj.onc.1203558. PMID 10822386. 
  24. ^ a b c “A direct binding site for Grb2 contributes to transformation and leukemogenesis by the Tel-Abl (ETV6-Abl) tyrosine kinase”. Molecular and Cellular Biology 24 (11): 4685–95. (Jun 2004). doi:10.1128/MCB.24.11.4685-4695.2004. PMC 416425. PMID 15143164. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC416425/. 
  25. ^ a b c “Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway”. The EMBO Journal 13 (4): 764–73. (Feb 1994). doi:10.1002/j.1460-2075.1994.tb06319.x. PMC 394874. PMID 8112292. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC394874/. 
  26. ^ “The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase”. Blood 96 (2): 664–70. (Jul 2000). doi:10.1182/blood.V96.2.664. PMID 10887132. http://www.escholarship.org/uc/item/2pv2423x. 
  27. ^ “The SH2-containing adapter protein GRB10 interacts with BCR-ABL”. Oncogene 17 (8): 941–8. (Aug 1998). doi:10.1038/sj.onc.1202024. PMID 9747873. 
  28. ^ “Bcr phosphorylated on tyrosine 177 binds Grb2”. Oncogene 14 (19): 2367–72. (May 1997). doi:10.1038/sj.onc.1201053. PMID 9178913. 
  29. ^ “Tyrosine phosphorylation of BCR by FPS/FES protein-tyrosine kinases induces association of BCR with GRB-2/SOS”. Molecular and Cellular Biology 15 (2): 835–42. (Feb 1995). doi:10.1128/mcb.15.2.835. PMC 231961. PMID 7529874. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC231961/. 
  30. ^ “Insulin stimulates sequestration of beta-adrenergic receptors and enhanced association of beta-adrenergic receptors with Grb2 via tyrosine 350”. The Journal of Biological Chemistry 273 (49): 33035–41. (Dec 1998). doi:10.1074/jbc.273.49.33035. PMID 9830057. 
  31. ^ “Specific uncoupling of GRB2 from the Met receptor. Differential effects on transformation and motility”. The Journal of Biological Chemistry 271 (24): 14119–23. (Jun 1996). doi:10.1074/jbc.271.24.14119. PMID 8662889. 
  32. ^ “Signaling by HGF and KGF in corneal epithelial cells: Ras/MAP kinase and Jak-STAT pathways”. Investigative Ophthalmology & Visual Science 39 (8): 1329–38. (Jul 1998). PMID 9660480. 
  33. ^ a b “cbl-b inhibits epidermal growth factor receptor signaling”. Oncogene 18 (10): 1855–66. (Mar 1999). doi:10.1038/sj.onc.1202499. PMID 10086340. 
  34. ^ “The CBL-related protein CBLB participates in FLT3 and interleukin-7 receptor signal transduction in pro-B cells”. The Journal of Biological Chemistry 273 (24): 14962–7. (Jun 1998). doi:10.1074/jbc.273.24.14962. PMID 9614102. 
  35. ^ “Tyrosine phosphorylation and complex formation of Cbl-b upon T cell receptor stimulation”. Oncogene 18 (5): 1147–56. (Feb 1999). doi:10.1038/sj.onc.1202411. PMID 10022120. 
  36. ^ a b “Grap is a novel SH3-SH2-SH3 adaptor protein that couples tyrosine kinases to the Ras pathway”. The Journal of Biological Chemistry 271 (21): 12129–32. (May 1996). doi:10.1074/jbc.271.21.12129. PMID 8647802. 
  37. ^ “Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation”. The EMBO Journal 18 (4): 904–15. (Feb 1999). doi:10.1093/emboj/18.4.904. PMC 1171183. PMID 10022833. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171183/. 
  38. ^ “Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor”. The Biochemical Journal 341 (1): 211–6. (Jul 1999). doi:10.1042/0264-6021:3410211. PMC 1220349. PMID 10377264. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220349/. 
  39. ^ “CD22 forms a quaternary complex with SHIP, Grb2, and Shc. A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux”. The Journal of Biological Chemistry 275 (23): 17420–7. (Jun 2000). doi:10.1074/jbc.M001892200. PMID 10748054. 
  40. ^ “CD22 regulates B cell receptor-mediated signals via two domains that independently recruit Grb2 and SHP-1”. The Journal of Biological Chemistry 276 (47): 44315–22. (Nov 2001). doi:10.1074/jbc.M105446200. PMID 11551923. 
  41. ^ “Grb2 forms an inducible protein complex with CD28 through a Src homology 3 domain-proline interaction”. The Journal of Biological Chemistry 273 (33): 21194–202. (Aug 1998). doi:10.1074/jbc.273.33.21194. PMID 9694876. 
  42. ^ “Signal transduction by CD28 costimulatory receptor on T cells. B7-1 and B7-2 regulation of tyrosine kinase adaptor molecules”. The Journal of Biological Chemistry 271 (3): 1591–8. (Jan 1996). doi:10.1074/jbc.271.3.1591. PMID 8576157. 
  43. ^ “Direct binding of the signal-transducing adaptor Grb2 facilitates down-regulation of the cyclin-dependent kinase inhibitor p27Kip1”. The Journal of Biological Chemistry 276 (15): 12084–90. (Apr 2001). doi:10.1074/jbc.M010811200. PMID 11278754. 
  44. ^ “The beta-subunit of the hepatocyte growth factor/scatter factor (HGF/SF) receptor phosphorylates and associates with CrkII: expression of CrkII enhances HGF/SF-induced mitogenesis”. The Biochemical Journal 350 (3): 925–32. (Sep 2000). doi:10.1042/0264-6021:3500925. PMC 1221328. PMID 10970810. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221328/. 
  45. ^ “Interaction between the amino-terminal SH3 domain of CRK and its natural target proteins”. The Journal of Biological Chemistry 271 (24): 14468–72. (Jun 1996). doi:10.1074/jbc.271.24.14468. PMID 8662907. 
  46. ^ a b “Interactions between Src homology (SH) 2/SH3 adapter proteins and the guanylnucleotide exchange factor SOS are differentially regulated by insulin and epidermal growth factor”. The Journal of Biological Chemistry 271 (41): 25533–8. (Oct 1996). doi:10.1074/jbc.271.41.25533. PMID 8810325. 
  47. ^ a b “Cbl functions downstream of Src kinases in Fc gamma RI signaling in primary human macrophages”. Journal of Leukocyte Biology 65 (4): 523–34. (Apr 1999). doi:10.1002/jlb.65.4.523. PMID 10204582. 
  48. ^ a b c “FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl”. Proceedings of the National Academy of Sciences of the United States of America 99 (10): 6684–9. (May 2002). Bibcode2002PNAS...99.6684W. doi:10.1073/pnas.052138899. PMC 124463. PMID 11997436. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC124463/. 
  49. ^ a b c d e f “Differential effect of the inhibition of Grb2-SH3 interactions in platelet activation induced by thrombin and by Fc receptor engagement”. The Biochemical Journal 363 (Pt 3): 717–25. (May 2002). doi:10.1042/0264-6021:3630717. PMC 1222524. PMID 11964172. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222524/. 
  50. ^ a b c “Gads is a novel SH2 and SH3 domain-containing adaptor protein that binds to tyrosine-phosphorylated Shc”. Oncogene 17 (24): 3073–82. (Dec 1998). doi:10.1038/sj.onc.1202337. PMID 9872323. 
  51. ^ a b c “High affinity IgG receptor activation of Src family kinases is required for modulation of the Shc-Grb2-Sos complex and the downstream activation of the nicotinamide adenine dinucleotide phosphate (reduced) oxidase”. Journal of Immunology 163 (11): 6023–34. (Dec 1999). doi:10.4049/jimmunol.163.11.6023. PMID 10570290. 
  52. ^ “Tyrosine phosphorylation of p120cbl in BCR/abl transformed hematopoietic cells mediates enhanced association with phosphatidylinositol 3-kinase”. Oncogene 14 (18): 2217–28. (May 1997). doi:10.1038/sj.onc.1201049. PMID 9174058. 
  53. ^ “A c-Cbl yeast two hybrid screen reveals interactions with 14-3-3 isoforms and cytoskeletal components”. Biochemical and Biophysical Research Communications 240 (1): 46–50. (Nov 1997). doi:10.1006/bbrc.1997.7608. PMID 9367879. 
  54. ^ “The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor”. The Journal of Biological Chemistry 269 (37): 22921–4. (Sep 1994). doi:10.1016/S0021-9258(17)31595-8. PMID 8083187. 
  55. ^ “Interleukin-2 stimulation induces tyrosine phosphorylation of p120-Cbl and CrkL and formation of multimolecular signaling complexes in T lymphocytes and natural killer cells”. The Journal of Biological Chemistry 273 (7): 3986–93. (Feb 1998). doi:10.1074/jbc.273.7.3986. PMID 9461587. 
  56. ^ “CSF-1 stimulation induces the formation of a multiprotein complex including CSF-1 receptor, c-Cbl, PI 3-kinase, Crk-II and Grb2”. Oncogene 14 (19): 2331–8. (May 1997). doi:10.1038/sj.onc.1201074. PMID 9178909. 
  57. ^ “Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and Bcr-Abl”. Blood 89 (8): 2745–56. (Apr 1997). doi:10.1182/blood.V89.8.2745. PMID 9108392. 
  58. ^ “Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates”. The EMBO Journal 27 (5): 804–16. (Mar 2008). doi:10.1038/emboj.2008.18. PMC 2265755. PMID 18273061. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265755/. 
  59. ^ “Identification of a second Grb2 binding site in the v-Fms tyrosine kinase”. Oncogene 15 (13): 1565–72. (Sep 1997). doi:10.1038/sj.onc.1201518. PMID 9380408. 
  60. ^ “Identification of a novel 135-kDa Grb2-binding protein in osteoclasts”. The Journal of Biological Chemistry 271 (51): 33141–7. (Dec 1996). doi:10.1074/jbc.271.51.33141. PMID 8955163. 
  61. ^ “Association of Ash/Grb-2 with dynamin through the Src homology 3 domain”. The Journal of Biological Chemistry 269 (8): 5489–92. (Feb 1994). doi:10.1016/S0021-9258(17)37484-7. PMID 8119878. 
  62. ^ a b “Multiple Grb2-protein complexes in human cancer cells”. International Journal of Cancer 70 (2): 208–13. (Jan 1997). doi:10.1002/(sici)1097-0215(19970117)70:2<208::aid-ijc12>3.0.co;2-e. PMID 9009162. 
  63. ^ “Differential regulation of cell motility and invasion by FAK”. The Journal of Cell Biology 160 (5): 753–67. (Mar 2003). doi:10.1083/jcb.200212114. PMC 2173366. PMID 12615911. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173366/. 
  64. ^ “DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane”. Molecular and Cellular Biology 16 (4): 1770–6. (Apr 1996). doi:10.1128/mcb.16.4.1770. PMC 231163. PMID 8657152. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC231163/. 
  65. ^ “SH3 domain-mediated interaction of dystroglycan and Grb2”. The Journal of Biological Chemistry 270 (20): 11711–4. (May 1995). doi:10.1074/jbc.270.20.11711. PMID 7744812. 
  66. ^ “Activation of the EphA2 tyrosine kinase stimulates the MAP/ERK kinase signaling cascade”. Oncogene 21 (50): 7690–9. (Oct 2002). doi:10.1038/sj.onc.1205758. PMID 12400011. 
  67. ^ a b c d “UCS15A, a novel small molecule, SH3 domain-mediated protein-protein interaction blocking drug”. Oncogene 21 (13): 2037–50. (Mar 2002). doi:10.1038/sj.onc.1205271. PMID 11960376. 
  68. ^ a b c d e “A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling”. Nature Biotechnology 21 (3): 315–8. (Mar 2003). doi:10.1038/nbt790. PMID 12577067. 
  69. ^ a b “Phosphotyrosine interactome of the ErbB-receptor kinase family”. Molecular Systems Biology 1: E1–E13. (2005). doi:10.1038/msb4100012. PMC 1681463. PMID 16729043. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1681463/. 
  70. ^ “A differential requirement for the COOH-terminal region of the epidermal growth factor (EGF) receptor in amphiregulin and EGF mitogenic signaling”. The Journal of Biological Chemistry 274 (13): 8900–9. (Mar 1999). doi:10.1074/jbc.274.13.8900. PMID 10085134. 
  71. ^ “Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptors in intact cells”. The Journal of Biological Chemistry 269 (49): 31310–4. (Dec 1994). doi:10.1016/S0021-9258(18)47424-8. hdl:20.500.14094/D2001922. PMID 7527043. 
  72. ^ a b “The RIalpha subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-receptor”. Oncogene 14 (8): 923–8. (Feb 1997). doi:10.1038/sj.onc.1200906. PMID 9050991. 
  73. ^ “Cloning and characterization of GRB14, a novel member of the GRB7 gene family”. The Journal of Biological Chemistry 271 (21): 12502–10. (May 1996). doi:10.1074/jbc.271.21.12502. PMID 8647858. 
  74. ^ a b “A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells”. The Journal of Biological Chemistry 269 (12): 9019–23. (Mar 1994). doi:10.1016/S0021-9258(17)37070-9. PMID 7510700. 
  75. ^ a b “Identification of Grb4/Nckbeta, a src homology 2 and 3 domain-containing adapter protein having similar binding and biological properties to Nck”. The Journal of Biological Chemistry 274 (9): 5542–9. (Feb 1999). doi:10.1074/jbc.274.9.5542. PMID 10026169. 
  76. ^ “Involvement of SH2-containing phosphotyrosine phosphatase Syp in erythropoietin receptor signal transduction pathways”. The Journal of Biological Chemistry 270 (10): 5631–5. (Mar 1995). doi:10.1074/jbc.270.10.5631. PMID 7534299. 
  77. ^ “Suc1-associated neurotrophic factor target (SNT) protein is a major FGF-stimulated tyrosine phosphorylated 90-kDa protein which binds to the SH2 domain of GRB2”. Biochemical and Biophysical Research Communications 225 (3): 1021–6. (Aug 1996). doi:10.1006/bbrc.1996.1288. PMID 8780727. 
  78. ^ “The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation”. The Journal of Biological Chemistry 274 (14): 9861–70. (Apr 1999). doi:10.1074/jbc.274.14.9861. PMID 10092678. 
  79. ^ “A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway”. Cell 89 (5): 693–702. (May 1997). doi:10.1016/s0092-8674(00)80252-4. PMID 9182757. 
  80. ^ “Identification of interaction partners of the cytosolic polyproline region of CD95 ligand (CD178)”. FEBS Letters 519 (1–3): 50–8. (May 2002). doi:10.1016/s0014-5793(02)02709-6. PMID 12023017. 
  81. ^ “Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor”. FEBS Letters 509 (2): 255–62. (Dec 2001). doi:10.1016/s0014-5793(01)03174-x. PMID 11741599. 
  82. ^ a b “The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gab1 and SLP-76 which lack the SH3-typical P-x-x-P core motif”. Oncogene 20 (9): 1052–62. (Mar 2001). doi:10.1038/sj.onc.1204202. PMID 11314042. 
  83. ^ “A Grb2-associated docking protein in EGF- and insulin-receptor signalling”. Nature 379 (6565): 560–4. (Feb 1996). Bibcode1996Natur.379..560H. doi:10.1038/379560a0. PMID 8596638. 
  84. ^ “PKB-mediated negative feedback tightly regulates mitogenic signalling via Gab2”. The EMBO Journal 21 (1–2): 72–82. (Jan 2002). doi:10.1093/emboj/21.1.72. PMC 125816. PMID 11782427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC125816/. 
  85. ^ “Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1”. The Journal of Biological Chemistry 274 (28): 19649–54. (Jul 1999). doi:10.1074/jbc.274.28.19649. PMID 10391903. 
  86. ^ a b “Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6”. FEBS Letters 401 (2–3): 133–7. (Jan 1997). doi:10.1016/s0014-5793(96)01456-1. PMID 9013873. 
  87. ^ a b “Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor”. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1448 (1): 70–6. (Nov 1998). doi:10.1016/s0167-4889(98)00120-7. hdl:10536/DRO/DU:30096477. PMID 9824671. 
  88. ^ a b “Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth”. The Journal of Biological Chemistry 276 (52): 48679–92. (Dec 2001). doi:10.1074/jbc.M106759200. PMID 11606575. 
  89. ^ “ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner”. Molecular and Cellular Biology 18 (9): 5042–51. (Sep 1998). doi:10.1128/mcb.18.9.5042. PMC 109089. PMID 9710588. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC109089/. 
  90. ^ “Grb2 and its apoptotic isoform Grb3-3 associate with heterogeneous nuclear ribonucleoprotein C, and these interactions are modulated by poly(U) RNA”. The Journal of Biological Chemistry 273 (13): 7776–81. (Mar 1998). doi:10.1074/jbc.273.13.7776. PMID 9516488. 
  91. ^ “SH3 domain-dependent association of huntingtin with epidermal growth factor receptor signaling complexes”. The Journal of Biological Chemistry 272 (13): 8121–4. (Mar 1997). doi:10.1074/jbc.272.13.8121. PMID 9079622. 
  92. ^ “Multiple forms of an inositol polyphosphate 5-phosphatase form signaling complexes with Shc and Grb2”. Current Biology 6 (4): 438–45. (Apr 1996). Bibcode1996CBio....6..438K. doi:10.1016/s0960-9822(02)00511-0. PMID 8723348. 
  93. ^ a b c “Involvement of Janus kinases in the insulin signaling pathway”. European Journal of Biochemistry 234 (2): 656–60. (Dec 1995). doi:10.1111/j.1432-1033.1995.656_b.x. PMID 8536716. 
  94. ^ a b “The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling”. The EMBO Journal 12 (5): 1929–36. (May 1993). doi:10.1002/j.1460-2075.1993.tb05842.x. PMC 413414. PMID 8491186. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC413414/. 
  95. ^ “ETV6-NTRK3 transformation requires insulin-like growth factor 1 receptor signaling and is associated with constitutive IRS-1 tyrosine phosphorylation”. Oncogene 21 (37): 5684–95. (Aug 2002). doi:10.1038/sj.onc.1205669. PMID 12173038. 
  96. ^ “Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade”. The Journal of Biological Chemistry 275 (3): 2219–30. (Jan 2000). doi:10.1074/jbc.275.3.2219. PMID 10636929. 
  97. ^ “Regulatory intramolecular association in a tyrosine kinase of the Tec family”. Nature 385 (6611): 93–7. (Jan 1997). Bibcode1997Natur.385...93A. doi:10.1038/385093a0. PMID 8985255. 
  98. ^ “Through induction of juxtaposition and tyrosine kinase activity of Jak1, X-gene product of hepatitis B virus stimulates Ras and the transcriptional activation through AP-1, NF-kappaB, and SRE enhancers”. Biochemical and Biophysical Research Communications 286 (5): 886–94. (Sep 2001). doi:10.1006/bbrc.2001.5496. PMID 11527382. 
  99. ^ “Oncostatin M induces association of Grb2 with Janus kinase JAK2 in multiple myeloma cells”. The Journal of Experimental Medicine 182 (6): 1801–6. (Dec 1995). doi:10.1084/jem.182.6.1801. PMC 2192257. PMID 7500025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192257/. 
  100. ^ “Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src”. Oncogene 18 (33): 4647–53. (Aug 1999). doi:10.1038/sj.onc.1203079. PMID 10467411. 
  101. ^ “Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells”. The Biochemical Journal 356 (Pt 2): 461–71. (Jun 2001). doi:10.1042/0264-6021:3560461. PMC 1221857. PMID 11368773. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221857/. 
  102. ^ “LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation”. Cell 92 (1): 83–92. (Jan 1998). doi:10.1016/S0092-8674(00)80901-0. PMID 9489702. 
  103. ^ “Phosphorylation of the linker for activation of T-cells by Itk promotes recruitment of Vav”. Biochemistry 41 (34): 10732–40. (Aug 2002). doi:10.1021/bi025554o. PMID 12186560. 
  104. ^ a b “Characterization of Grb2-binding proteins in human platelets activated by Fc gamma RIIA cross-linking”. Blood 88 (2): 522–30. (Jul 1996). doi:10.1182/blood.V88.2.522.bloodjournal882522. PMID 8695800. 
  105. ^ “SLP-76 is a substrate of the high affinity IgE receptor-stimulated protein tyrosine kinases in rat basophilic leukemia cells”. The Journal of Biological Chemistry 272 (2): 1363–7. (Jan 1997). doi:10.1074/jbc.272.2.1363. PMID 8995445. 
  106. ^ “Grf40, A novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT”. The Journal of Experimental Medicine 189 (9): 1383–90. (May 1999). doi:10.1084/jem.189.9.1383. PMC 2193052. PMID 10224278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193052/. 
  107. ^ “Regulated association of microtubule-associated protein 2 (MAP2) with Src and Grb2: evidence for MAP2 as a scaffolding protein”. The Journal of Biological Chemistry 275 (27): 20578–87. (Jul 2000). doi:10.1074/jbc.M001887200. PMID 10781592. 
  108. ^ “Binding of Fyn to MAP-2c through an SH3 binding domain. Regulation of the interaction by ERK2”. The Journal of Biological Chemistry 276 (43): 39950–8. (Oct 2001). doi:10.1074/jbc.M107807200. PMID 11546790. 
  109. ^ “Grb2 interaction with MEK-kinase 1 is involved in regulation of Jun-kinase activities in response to epidermal growth factor”. The Journal of Biological Chemistry 273 (38): 24301–4. (Sep 1998). doi:10.1074/jbc.273.38.24301. PMID 9733714. 
  110. ^ “The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins”. Oncogene 17 (15): 1893–901. (Oct 1998). doi:10.1038/sj.onc.1202108. PMID 9788432. 
  111. ^ “SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1”. The Journal of Biological Chemistry 272 (44): 27804–11. (Oct 1997). doi:10.1074/jbc.272.44.27804. PMID 9346925. 
  112. ^ “Interaction of hematopoietic progenitor kinase 1 with adapter proteins Crk and CrkL leads to synergistic activation of c-Jun N-terminal kinase”. Molecular and Cellular Biology 19 (2): 1359–68. (Feb 1999). doi:10.1128/mcb.19.2.1359. PMC 116064. PMID 9891069. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC116064/. 
  113. ^ “Involvement of hematopoietic progenitor kinase 1 in T cell receptor signaling”. The Journal of Biological Chemistry 276 (22): 18908–14. (Jun 2001). doi:10.1074/jbc.M101485200. PMID 11279207. 
  114. ^ “Magicin, a novel cytoskeletal protein associates with the NF2 tumor suppressor merlin and Grb2”. Oncogene 23 (54): 8815–25. (Nov 2004). doi:10.1038/sj.onc.1208110. PMID 15467741. 
  115. ^ “Macrophage-stimulating protein activates Ras by both activation and translocation of SOS nucleotide exchange factor”. Biochemical and Biophysical Research Communications 216 (1): 110–8. (Nov 1995). doi:10.1006/bbrc.1995.2598. PMID 7488076. https://zenodo.org/record/1229468. 
  116. ^ “STK/RON receptor tyrosine kinase mediates both apoptotic and growth signals via the multifunctional docking site conserved among the HGF receptor family”. The EMBO Journal 15 (21): 5866–75. (Nov 1996). doi:10.1002/j.1460-2075.1996.tb00973.x. PMC 452340. PMID 8918464. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC452340/. 
  117. ^ a b “Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein”. Cancer Research 55 (18): 4000–3. (Sep 1995). PMID 7664271. 
  118. ^ “Involvement of stress-activated protein kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents”. Cell Growth & Differentiation 6 (12): 1651–8. (Dec 1995). PMID 9019171. 
  119. ^ “Ionizing radiation stimulates a Grb2-mediated association of the stress-activated protein kinase with phosphatidylinositol 3-kinase”. The Journal of Biological Chemistry 270 (32): 18871–4. (Aug 1995). doi:10.1074/jbc.270.32.18871. PMID 7642542. 
  120. ^ “mDia-interacting protein acts downstream of Rho-mDia and modifies Src activation and stress fiber formation”. The Journal of Biological Chemistry 276 (42): 39290–4. (Oct 2001). doi:10.1074/jbc.M107026200. PMID 11509578. 
  121. ^ “A novel neural Wiskott-Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42”. The Journal of Cell Biology 152 (3): 471–82. (Feb 2001). doi:10.1083/jcb.152.3.471. PMC 2196001. PMID 11157975. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196001/. 
  122. ^ “Overexpression of plasma membrane-associated sialidase attenuates insulin signaling in transgenic mice”. The Journal of Biological Chemistry 278 (30): 27896–902. (Jul 2003). doi:10.1074/jbc.M212200200. PMID 12730204. 
  123. ^ “Tyr-716 in the platelet-derived growth factor beta-receptor kinase insert is involved in GRB2 binding and Ras activation”. Molecular and Cellular Biology 14 (10): 6715–26. (Oct 1994). doi:10.1128/mcb.14.10.6715. PMC 359202. PMID 7935391. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC359202/. 
  124. ^ a b “Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor”. Oncogene 15 (15): 1823–32. (Oct 1997). doi:10.1038/sj.onc.1201351. PMID 9362449. 
  125. ^ “Monocyte colony-stimulating factor stimulates binding of phosphatidylinositol 3-kinase to Grb2.Sos complexes in human monocytes”. The Journal of Biological Chemistry 270 (18): 10380–3. (May 1995). doi:10.1074/jbc.270.18.10380. PMID 7737969. 
  126. ^ “Direct association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase”. The Journal of Biological Chemistry 270 (21): 12774–80. (May 1995). doi:10.1074/jbc.270.21.12774. PMID 7759531. 
  127. ^ “A new function for phospholipase C-gamma1: coupling to the adaptor protein GRB2”. Archives of Biochemistry and Biophysics 345 (1): 103–10. (Sep 1997). doi:10.1006/abbi.1997.0245. PMID 9281317. 
  128. ^ a b “Ligation of the T-cell antigen receptor (TCR) induces association of hSos1, ZAP-70, phospholipase C-gamma 1, and other phosphoproteins with Grb2 and the zeta-chain of the TCR”. The Journal of Biological Chemistry 270 (31): 18428–36. (Aug 1995). doi:10.1074/jbc.270.31.18428. PMID 7629168. 
  129. ^ “Engagement of the T lymphocyte antigen receptor regulates association of son-of-sevenless homologues with the SH3 domain of phospholipase Cgamma1”. European Journal of Immunology 30 (8): 2378–87. (Aug 2000). doi:10.1002/1521-4141(2000)30:8<2378::AID-IMMU2378>3.0.CO;2-E. PMID 10940929. 
  130. ^ “FAK integrates growth-factor and integrin signals to promote cell migration”. Nature Cell Biology 2 (5): 249–56. (May 2000). doi:10.1038/35010517. PMID 10806474. http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-41292. 
  131. ^ “An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase”. Molecular and Cellular Biology 16 (6): 3169–78. (Jun 1996). doi:10.1128/mcb.16.6.3169. PMC 231310. PMID 8649427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC231310/. 
  132. ^ “Specific interactions of neuronal focal adhesion kinase isoforms with Src kinases and amphiphysin”. Journal of Neurochemistry 84 (2): 253–65. (Jan 2003). doi:10.1046/j.1471-4159.2003.01519.x. PMID 12558988. 
  133. ^ “The structural basis of localization and signaling by the focal adhesion targeting domain”. Structure 10 (3): 319–27. (Mar 2002). doi:10.1016/s0969-2126(02)00717-7. PMID 12005431. 
  134. ^ a b “Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells”. Journal of Leukocyte Biology 65 (3): 372–80. (Mar 1999). doi:10.1002/jlb.65.3.372. PMID 10080542. 
  135. ^ a b c “Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk”. The Journal of Biological Chemistry 275 (23): 17263–8. (Jun 2000). doi:10.1074/jbc.M000689200. PMID 10747947. 
  136. ^ “Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras”. Proceedings of the National Academy of Sciences of the United States of America 91 (15): 7335–9. (Jul 1994). Bibcode1994PNAS...91.7335B. doi:10.1073/pnas.91.15.7335. PMC 44394. PMID 8041791. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44394/. 
  137. ^ “Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases”. The Journal of Biological Chemistry 272 (2): 1032–7. (Jan 1997). doi:10.1074/jbc.272.2.1032. PMID 8995399. 
  138. ^ “Fyn kinase-directed activation of SH2 domain-containing protein-tyrosine phosphatase SHP-2 by Gi protein-coupled receptors in Madin-Darby canine kidney cells”. The Journal of Biological Chemistry 274 (18): 12401–7. (Apr 1999). doi:10.1074/jbc.274.18.12401. PMID 10212213. 
  139. ^ “Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation”. Molecular and Cellular Biology 18 (7): 3966–73. (Jul 1998). doi:10.1128/mcb.18.7.3966. PMC 108981. PMID 9632781. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC108981/. 
  140. ^ “Epidermal growth factor induces coupling of protein-tyrosine phosphatase 1D to GRB2 via the COOH-terminal SH3 domain of GRB2”. The Journal of Biological Chemistry 271 (35): 20981–4. (Aug 1996). doi:10.1074/jbc.271.35.20981. PMID 8702859. 
  141. ^ “Coupling of the murine protein tyrosine phosphatase PEST to the epidermal growth factor (EGF) receptor through a Src homology 3 (SH3) domain-mediated association with Grb2”. Oncogene 14 (14): 1643–51. (Apr 1997). doi:10.1038/sj.onc.1201008. PMID 9135065. 
  142. ^ “Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein”. The Journal of Biological Chemistry 275 (6): 4283–9. (Feb 2000). doi:10.1074/jbc.275.6.4283. PMID 10660596. 
  143. ^ “Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130(Cas)”. The Journal of Biological Chemistry 271 (49): 31290–5. (Dec 1996). doi:10.1074/jbc.271.49.31290. PMID 8940134. 
  144. ^ “The tyrosine phosphatase PTP1C associates with Vav, Grb2, and mSos1 in hematopoietic cells”. The Journal of Biological Chemistry 271 (7): 3856–62. (Feb 1996). doi:10.1074/jbc.271.7.3856. PMID 8632004. 
  145. ^ “Tight association of GRB2 with receptor protein-tyrosine phosphatase alpha is mediated by the SH2 and C-terminal SH3 domains”. The EMBO Journal 15 (12): 3016–27. (Jun 1996). doi:10.1002/j.1460-2075.1996.tb00665.x. PMC 450243. PMID 8670803. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC450243/. 
  146. ^ “Phosphorylation of receptor protein-tyrosine phosphatase alpha on Tyr789, a binding site for the SH3-SH2-SH3 adaptor protein GRB-2 in vivo”. The EMBO Journal 13 (13): 3020–32. (Jul 1994). doi:10.1002/j.1460-2075.1994.tb06601.x. PMC 395191. PMID 7518772. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC395191/. 
  147. ^ “Mitotic activation of protein-tyrosine phosphatase alpha and regulation of its Src-mediated transforming activity by its sites of protein kinase C phosphorylation”. The Journal of Biological Chemistry 277 (24): 21922–9. (Jun 2002). doi:10.1074/jbc.M201394200. PMC 5641391. PMID 11923305. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641391/. 
  148. ^ “Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors”. The Journal of Biological Chemistry 271 (15): 8564–9. (Apr 1996). doi:10.1074/jbc.271.15.8564. PMID 8621483. 
  149. ^ “C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins”. Proceedings of the National Academy of Sciences of the United States of America 91 (8): 3443–7. (Apr 1994). Bibcode1994PNAS...91.3443T. doi:10.1073/pnas.91.8.3443. PMC 43593. PMID 7512734. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC43593/. 
  150. ^ “The oncogenic versions of the Ret and Trk tyrosine kinases bind Shc and Grb2 adaptor proteins”. Oncogene 9 (6): 1661–8. (Jun 1994). PMID 8183561. 
  151. ^ “The Ret receptor protein tyrosine kinase associates with the SH2-containing adapter protein Grb10”. The Journal of Biological Chemistry 270 (37): 21461–3. (Sep 1995). doi:10.1074/jbc.270.37.21461. PMID 7665556. 
  152. ^ “Identification and characterization of novel substrates of Trk receptors in developing neurons”. Neuron 21 (5): 1017–29. (Nov 1998). doi:10.1016/s0896-6273(00)80620-0. PMID 9856458. 
  153. ^ “SH2-Balpha is an insulin-receptor adapter protein and substrate that interacts with the activation loop of the insulin-receptor kinase”. The Biochemical Journal 335 (1): 103–9. (Oct 1998). doi:10.1042/bj3350103. PMC 1219757. PMID 9742218. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1219757/. 
  154. ^ “Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein”. The EMBO Journal 19 (15): 4015–25. (Aug 2000). doi:10.1093/emboj/19.15.4015. PMC 306608. PMID 10921882. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC306608/. 
  155. ^ “SETA is a multifunctional adapter protein with three SH3 domains that binds Grb2, Cbl, and the novel SB1 proteins”. Cellular Signalling 12 (11–12): 769–79. (Dec 2000). doi:10.1016/s0898-6568(00)00129-7. PMID 11152963. 
  156. ^ a b “Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation”. FEBS Letters 386 (2–3): 230–4. (May 1996). doi:10.1016/0014-5793(96)00449-8. PMID 8647288. 
  157. ^ “Pathways downstream of Shc and Grb2 are required for cell transformation by the tpr-Met oncoprotein”. The Journal of Biological Chemistry 271 (22): 13116–22. (May 1996). doi:10.1074/jbc.271.22.13116. PMID 8662733. 
  158. ^ “Functional importance of Shc tyrosine 317 on insulin signaling in Rat1 fibroblasts expressing insulin receptors”. The Journal of Biological Chemistry 272 (14): 9581–6. (Apr 1997). doi:10.1074/jbc.272.14.9581. PMID 9083103. 
  159. ^ “Role of tyrosine residues and protein interaction domains of SHC adaptor in VEGF receptor 3 signaling”. Oncogene 18 (2): 507–14. (Jan 1999). doi:10.1038/sj.onc.1202315. PMID 9927207. 
  160. ^ “The adapter protein Shc interacts with the interleukin-2 (IL-2) receptor upon IL-2 stimulation”. The Journal of Biological Chemistry 269 (3): 1599–602. (Jan 1994). doi:10.1016/S0021-9258(17)42066-7. PMID 8294403. 
  161. ^ “Fear memory formation involves p190 RhoGAP and ROCK proteins through a GRB2-mediated complex”. Neuron 36 (4): 727–38. (Nov 2002). doi:10.1016/s0896-6273(02)01047-4. PMID 12441060. 
  162. ^ a b “Role of Src in the modulation of multiple adaptor proteins in FcalphaRI oxidant signaling”. Blood 94 (6): 2112–20. (Sep 1999). doi:10.1182/blood.V94.6.2112. PMID 10477741. 
  163. ^ “Shc mediates ligand-induced internalization of epidermal growth factor receptors”. Biochemical and Biophysical Research Communications 282 (5): 1154–60. (Apr 2001). doi:10.1006/bbrc.2001.4680. PMID 11302736. 
  164. ^ “Inhibition of insulin-like growth factor-I signaling by ethanol in neuronal cells”. Alcoholism: Clinical and Experimental Research 25 (7): 1058–64. (Jul 2001). doi:10.1111/j.1530-0277.2001.tb02317.x. PMID 11505033. 
  165. ^ “Direct interaction between Shc and the platelet-derived growth factor beta-receptor”. The Journal of Biological Chemistry 269 (21): 15337–43. (May 1994). doi:10.1016/S0021-9258(17)36611-5. PMID 8195171. 
  166. ^ “Stimulation of glycogen synthesis by insulin in human erythroleukemia cells requires the synthesis of glycosyl-phosphatidylinositol”. Proceedings of the National Academy of Sciences of the United States of America 91 (21): 9665–9. (Oct 1994). Bibcode1994PNAS...91.9665L. doi:10.1073/pnas.91.21.9665. PMC 44877. PMID 7524086. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44877/. 
  167. ^ “Growth hormone-promoted tyrosyl phosphorylation of SHC proteins and SHC association with Grb2”. The Journal of Biological Chemistry 270 (13): 7587–93. (Mar 1995). doi:10.1074/jbc.270.13.7587. PMID 7535773. 
  168. ^ “Signal transduction pathway of human fibroblast growth factor receptor 3. Identification of a novel 66-kDa phosphoprotein”. The Journal of Biological Chemistry 272 (10): 6621–8. (Mar 1997). doi:10.1074/jbc.272.10.6621. PMID 9045692. 
  169. ^ a b “Point mutation in the fibroblast growth factor receptor eliminates phosphatidylinositol hydrolysis without affecting neuronal differentiation of PC12 cells”. The Journal of Biological Chemistry 269 (20): 14419–23. (May 1994). doi:10.1016/S0021-9258(17)36639-5. PMID 7514169. 
  170. ^ “Shc mediates IL-6 signaling by interacting with gp130 and Jak2 kinase”. Journal of Immunology 158 (9): 4097–103. (May 1997). doi:10.4049/jimmunol.158.9.4097. PMID 9126968. 
  171. ^ a b “hSiah2 is a new Vav binding protein which inhibits Vav-mediated signaling pathways”. Molecular and Cellular Biology 19 (5): 3798–807. (May 1999). doi:10.1128/mcb.19.5.3798. PMC 84217. PMID 10207103. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC84217/. 
  172. ^ “Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling”. Nature 363 (6424): 85–8. (May 1993). Bibcode1993Natur.363...85L. doi:10.1038/363085a0. PMID 8479541. 
  173. ^ “SH3 domains of the adapter molecule Grb2 complex with two proteins in T cells: the guanine nucleotide exchange protein Sos and a 75-kDa protein that is a substrate for T cell antigen receptor-activated tyrosine kinases”. The Journal of Biological Chemistry 269 (19): 14081–7. (May 1994). doi:10.1016/S0021-9258(17)36757-1. PMID 8188688. 
  174. ^ “16K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells”. Molecular Endocrinology 13 (5): 692–704. (May 1999). doi:10.1210/mend.13.5.0280. PMID 10319320. 
  175. ^ “The endocytic protein intersectin is a major binding partner for the Ras exchange factor mSos1 in rat brain”. The EMBO Journal 19 (6): 1263–71. (Mar 2000). doi:10.1093/emboj/19.6.1263. PMC 305667. PMID 10716926. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC305667/. 
  176. ^ “Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells”. Biochemical and Biophysical Research Communications 239 (2): 412–7. (Oct 1997). doi:10.1006/bbrc.1997.7480. PMID 9344843. 
  177. ^ “The inhibitory gamma subunit of the type 6 retinal cGMP phosphodiesterase functions to link c-Src and G-protein-coupled receptor kinase 2 in a signaling unit that regulates p42/p44 mitogen-activated protein kinase by epidermal growth factor”. The Journal of Biological Chemistry 278 (20): 18658–63. (May 2003). doi:10.1074/jbc.M212103200. PMID 12624098. 
  178. ^ “Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner”. Biochemical and Biophysical Research Communications 284 (2): 470–7. (Jun 2001). doi:10.1006/bbrc.2001.5004. PMID 11394904. 
  179. ^ “Expression of full-length polyglutamine-expanded Huntingtin disrupts growth factor receptor signaling in rat pheochromocytoma (PC12) cells”. The Journal of Biological Chemistry 277 (8): 6703–7. (Feb 2002). doi:10.1074/jbc.M110338200. PMID 11733534. 
  180. ^ “Direct binding of the signaling adapter protein Grb2 to the activation loop tyrosines on the nerve growth factor receptor tyrosine kinase, TrkA”. The Journal of Biological Chemistry 275 (24): 18225–33. (Jun 2000). doi:10.1074/jbc.M001862200. PMID 10748052. 
  181. ^ “Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex”. The Journal of Biological Chemistry 271 (43): 26962–70. (Oct 1996). doi:10.1074/jbc.271.43.26962. PMID 8900182. 
  182. ^ “Binding of Vav to Grb2 through dimerization of Src homology 3 domains”. Proceedings of the National Academy of Sciences of the United States of America 91 (26): 12629–33. (Dec 1994). Bibcode1994PNAS...9112629Y. doi:10.1073/pnas.91.26.12629. PMC 45492. PMID 7809090. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC45492/. 
  183. ^ “Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation”. Molecular and Cellular Biology 20 (24): 9212–24. (Dec 2000). doi:10.1128/mcb.20.24.9212-9224.2000. PMC 102179. PMID 11094073. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102179/. 
  184. ^ “Wiskott-Aldrich syndrome protein (WASp) is a binding partner for c-Src family protein-tyrosine kinases”. Current Biology 6 (8): 981–8. (Aug 1996). Bibcode1996CBio....6..981B. doi:10.1016/s0960-9822(02)00642-5. PMID 8805332. 
  185. ^ “Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells”. Molecular Biology of the Cell 8 (9): 1709–21. (Sep 1997). doi:10.1091/mbc.8.9.1709. PMC 305731. PMID 9307968. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC305731/. 

関連文献

編集

関連項目

編集

外部リンク

編集