数学における(むげんしょう、: infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さくなろうと、角度傾きといったある種の性質はそのまま有効であることである[1]

歴史

編集

術語 "infinitesimal" は、17世紀の造語 : infinitesimus(もともとはの「無限番目」のを意味する言葉)に由来し、これを導入したのは恐らく1670年ごろ、メルカトルライプニッツである[2]。無限小はライプニッツが連続の法則英語版同質性の超限法則英語版などをもとに展開した無限小解析における基本的な材料である。よくある言い方では、無限小対象とは「可能な如何なる測度よりも小さいが0でない対象である」とか「如何なる適当な意味においても0と区別することができないほど極めて小さい」などと説明される。故に形容(動)詞的に「無限小」を用いるときには、それは「極めて小さい」という意味である。このような量が意味を持たせるために、通常は同じ文脈における他の無限小対象と比較をすること(例えば微分商)が求められる。無限個の無限小を足し合わせることで積分が与えられる。

シラクサのアルキメデスは、自身の著書方法』において不可分の方法と呼ばれる手法を応分に用いて領域の面積立体体積を求めた[3]。正式に出版された論文では、アルキメデスは同じ問題を取り尽くし法を用いて証明している。15世紀にはニコラウス・クザーヌスの業績として(17世紀にはケプラーがより詳しく調べているが)、特に無限個の辺を持つ多角形と見做して円の面積を計算する方法が見受けられる。16世紀における、任意の実数十進表示に関するシモン・ステヴィンの業績によって、実連続体を考える下地はすでにでき上がっていた。カヴァリエリの不可分の方法は、過去の数学者たちの結果を拡張することに繋がった。この不可分の方法は幾何学的な図形を余次元英語版 1 の量に分解することと関係がある。ジョン・ウォリスの無限小は不可分とは異なり、図形をもとの図形と同じ次元の無限に細い構成要素に分解するものとして、積分法の一般手法の下地を作り上げた。面積の計算においてウォリスは無限小を "1" と書いている。

ライプニッツによる無限小の利用は、連続の法則英語版有限な数に対して成り立つものは無限な数に対しても成り立ち、逆もまた然り」[* 1]同質性の超限法則英語版(割り当て不能な量を含む式に対して、それを割り当て可能な量のみからなる式で置き換える具体的な指針)というような、経験則的な原理に基づくものであった。18世紀にはレオンハルト・オイラージョゼフ=ルイ・ラグランジュらの数学者たちによって無限小は日常的に使用されていた。オーギュスタン=ルイ・コーシーは自身の著書 『解析教程』で、無限小を「連続量」(continuity) ともディラックのデルタ関数の前身的なものとも定義した。カントールとデデキントがステヴィンの連続体をより抽象的な対象として定義したのと同様に、パウル・デュ・ボア=レーモン英語版関数増大率に基づく「無限小で豊饒化された連続体」(infinitesimal-enriched continuum) に関する一連の論文を著した。デュ・ボア=レーモンの業績は、エミール・ボレルトアルフ・スコーレムの両者に示唆を与えた。ボレルは無限小の増大率に関するコーシーの仕事とデュ・ボア=レーモンの仕事を明示的に結び付けた。スコーレムは、1934年に最初の算術の超準モデルを発明した。連続の法則および無限小の数学的に厳密な定式化は、1961年にアブラハム・ロビンソンによって達成された(ロビンソンは1948年にエドウィン・ヒューイット英語版が、および1955年にイェジー・ウォッシュ英語版が成した先駆的研究に基づき超準解析を展開した)。ロビンソンの超実数 (hyper­reals) は無限小で豊饒化された連続体の厳密な定式化であり、移行原理英語版がライプニッツの連続の法則の厳密な定式化である。また、標準部英語版フェルマー擬等式の方法英語版 (ad­equality, pseudo­equality) の定式化である。

ウラジーミル・アーノルドは1990年に以下のように書いている:

Nowadays, when teaching analysis, it is not very popular to talk about infinitesimal quantities. Consequently present-day students are not fully in command of this language. Nevertheless, it is still necessary to have command of it.[4](訳: 今日では、解析学の授業において無限小量について述べることはあまり一般的ではない。その結果、当世の学生はこの言葉づかいに全く習熟していない。にも拘らず、未だにそれを扱うことが必要である)

一階の性質

編集

実数体系に無限大量および無限小量を加えた拡張を考えるとき、典型的には実数の持つ「基本」性質をできうる限り保存するものであって欲しいはずである。そうすれば、実数に関してよく知られた膨大な結果が、拡張した体系においてもそのまま使える保証が得られるからである。典型的には「基本」というのを、「に関する量化だけを行い、集合に対する量化は行わない」命題という意味にとる。この制限のもとで「任意の数 x について—」という主張は許容されるから、例えば、加法単位律「任意の数 x に対して x + 0 = x が成り立つ」という主張は有効な文である。これは複数の数を量化するのでもよいから、例えば「任意の二数 x, y について xy =yx が成り立つ」も有効である。しかし「数からなる任意の集合 S に対して—」という主張は拡張した体系に引き写すことはできない。このような量化に関する制限を伴う論理を一階論理と呼ぶ。

無限小を含むように拡張した数体系は、集合に関する量化によって表される性質の全てにおいて実数と同じ結果を示すものであってはならない。目的の体系は非アルキメデス的であるが、アルキメデスの公理は集合に関する量化によって表されるからである。実数や点集合に関する任意の理論に無限小を加えた保存的拡大を得る一つの方法は、単に「無限小は 1/2 より小さい」「無限小は 1/3 より小さい」…(以下同様) といった主張からなる可算無限個の公理を付け加えることである。同様に、完備性も目的の体系では期待できない。実数体は同型を除いて一意な完備順序体だからである。

実数の一階の性質と両立する性質を持つような非アルキメデス的数体系について、次の三つのレベルを区別することができる:

  1. 順序体一階論理で述べられる実数体系の全ての通常の公理に従う。例えば可換律   が成り立つ。一方、全ての性質を共有するわけではない。例えば、非零数の平方の和は非零であること(実体の公理)は言えるが、奇数次多項式が必ず根を持つことは言えない。
  2. 実閉体は、通常公理として取られるかどうかに関わらず、順序体の基本的関係 +, ×, ≤ を含むような主張について、実数体系の持つ全ての一階の性質を持つ。(これは実閉体の一階理論 RCF が完全であるという事実に負う。)これは順序体の公理をすべて満足するという主張よりも強い条件である。よりはっきりいえば、「任意の奇数次多項式が根を持つ」というような一階の性質が追加で含まれる。この体系においては、例えば任意の数が立方根を持たねばならない。
  3. この体系では、いかなる関係(それらの関係が × で表される必要はない)を含む主張についても、実数体系の持つ全ての一階の性質を持つ。例えば、無限大の入力に対しても矛盾なく定まるような正弦関数があるのでなければならない。同じことはどんな実関数に対しても言える。

上記の分類 1 に属する体系(これらレベルのうち弱い側の場合)は構成することは比較的容易だが、ニュートンやライプニッツの精神に則って無限小を用いる古典的解析学を完全に展開することはできない。例えば、超越関数は無限大の極限過程の言葉で以て定義されるので、これは典型的には一階論理の中で定義できない。分類 2 や 3 に当てはまれば、解析的な色彩は濃くなるが、その扱いの構成的な性格が損なわれていく傾向があり、無限大や無限小の成す階層構造について何か具体的なことを言いづらくなってしまう。

無限小を含む数体系

編集

形式級数体

編集

ローラン級数体

編集

前述の分類 1 の例として、有限個の負冪の項を持つローラン級数の体がある。例えば、定数項 1 のみを持つローラン級数は実数の 1 と同一視される。また、一次項 x のみからなる級数をもっとも単純な無限小と看做して、それをもとに他の無限小が構成される。これに辞書式順序を入れることは、x のより高次の冪はより低次の冪と比べて「無視できる」(negligible) と考えることに等価である。デイヴィッド・トール英語版はこの数体系を the super­reals と呼んだ[5][* 2]。テイラー級数にローラン級数を代入したものはやはりローラン級数だから、この体系は超越関数の計算にそれが解析的である限りにおいて用いることができる。この体系における無限小の全体は実数とは異なる一階の性質を持つ。例えば基本の無限小 x はこの体系において平方根を持たない。

レヴィ-チヴィタ体

編集

レヴィ-チヴィタ体はローラン級数体とよく似た体系だが、代数閉体を成す。例えば基本無限小 x が平方根を持つ。この体は極めて大規模な解析学を展開可能とするに十分豊かな体系だが、実数が浮動小数点数として表現できるというのと同じ意味で計算機に載せることができる[6]

超越級数体

編集

超越級数英語版体はレヴィ-チヴィタ体よりも大きい[7]。超越級数の例として:

 

が挙げられる。ただし、この体における順序では x は「無限大」と解釈されるようにする。

超現実数体

編集

コンウェイ超現実数[8][* 3] (sur­real number)[* 4]は前述の分類 2 に当たる。この体系は数の大きさの違いに関して可能な限り豊かであるように意図されているが、解析学を行うのに必ずしも適してはいない。対数関数指数関数など特定の超越関数は超現実数の上でも定義することができるが、ほとんどの関数(例えば正弦関数)は持ち込むことができない。個別に取った任意の超現実数の存在は、それが実数と直接的に対応するものであってさえも、アプリオリには知ることができず、証明しなければならない。

超実数体

編集

無限小を扱う上でもっとも広く知られたやり方は、アブラハム・ロビンソンが1960年代に開発した超実数 (hyper­real number)[* 4]であろう。超実数は前掲の分類 3 に該当し、実数に基づく古典的な解析学の全てをその上で展開できるよう意図して作られた。この「任意の関係を自然な方法でこの体系に引き写すことができる」という性質は移行原理英語版と呼ばれ、1955年にイェジー・ウォシュ英語版が証明した。例えば、超越関数である正弦関数 sin は超実数変数超実数値の自然な対応物 *sin を持つし、同様に自然数全体の成す集合 N も自然な対応物として、有限整数に加えて無限整数も含む *N を持つ。そして、"nN, sin(nπ) = 0" のような命題は、超実数に関する命題 "n ∈ *N, *sin(nπ) = 0" に引き写される。

準超実数体

編集

Dales & Woodin (1996)準超実数[* 4]の体系は超実数体の一般化である[9][* 2]

二重数環

編集

線型代数学において二重数は一つの「無限小」を添加して得られる実数体の拡大環であって、添加する新たな元 ε複零、すなわち ε2 = 0 を満たす。任意の二元数は、実数 a, b を用いて z = a + と一意的に表される。

二重数の一つの応用が自動微分である。これは n-次元線型空間の外積代数を用いれば、n-変数多項式に対するものへ一般化することができる。

滑らかな無限小解析

編集

綜合微分幾何学英語版あるいは滑らかな無限小解析圏論に起源を持つ。このやり方では、従来の数学において古典論理が用いられることから外れて、排中律 (l.e.m) の一般適用を排除する(つまり、"¬(ab)" が "a = b" を意味しない)。それにより、複零 (nilsquare) あるいは冪零無限小が定義可能になる(つまり、x2 = 0 および x ≠ 0 が同時に成立する数 x存在しないことはない)。背景となる論理が直観主義論理であるため、このような数体系に前掲の分類 1, 2, 3 をどう当てはめることができるかは直ちには明らかでない(まずはこの分類の直観主義論理版を知らねばならない)。

注釈

編集
  1. ^ 有限/無限というのは個数に関して言うのではない(有限個/無限個ではない)ことに注意。ここでいう「有限」とは無限大でも無限小でもないという意味である。
  2. ^ a b Tall の super­real number と Dales & Woodin の super-real field を混同してはならない
  3. ^ 「超現実数」という訳語は、超現実主義 (sur­real­ism) のように、数学の分野外では sur­real が「超現実」と訳されることがあることによるものであろうが、字義的に言えば「超-現実数」と区切られる(そして「現実数」=「実数」)。故に、その複素版 sur­complex number の訳語として「超現複素数」が使われているのは、(通常の数学の語法では、実数上の構造に対して実数を複素数に取り換えて得られる構造は、名称においても「実→複素」と置き換えるのが普通なので、造語としてはある意味自然と言えなくもないが)字義的に見ればあまり適当とも言い難い。
  4. ^ a b c sur­real, hyper­real, super­real, … は「実数」を意味する real(s) に「-」を意味する接頭辞 sur-, hyper-, super-, … を付けたものであるから、直訳すれば何れも「超実数」となるべき語だが、通常は超実数と言えばロビンソンの hyper­reals を指す。これら「超」実数の指し示す数学的構造は論理的にまったく異なるものであって、訳語選択の問題は非常に紛らわしいが、超現実数 (sur­real) および超実数 (hyper­real) は既に定訳と考えてよいであろう。

参考文献

編集
  1. ^ http://plato.stanford.edu/entries/continuity/#1
  2. ^ *Katz, Mikhail; Sherry, David (2012), “Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond”, Erkenntnis, arXiv:1205.0174, doi:10.1007/s10670-012-9370-y .
  3. ^ Netz, Reviel; Saito, Ken; Tchernetska, Natalie: A new reading of Method Proposition 14: preliminary evidence from the Archimedes palimpsest. I. SCIAMVS 2 (2001), 9–29.
  4. ^ Arnolʹd, V. I. Huygens and Barrow, Newton and Hooke. Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals. Translated from the Russian by Eric J. F. Primrose. Birkhäuser Verlag, Basel, 1990. p. 27
  5. ^ Infinitesimals in Modern Mathematics”. Jonhoyle.com. 2011年3月11日閲覧。
  6. ^ Khodr Shamseddine, "Analysis on the Levi-Civia Field: A Brief Overview," http://www.uwec.edu/surepam/media/RS-Overview.pdf
  7. ^ G. A. Edgar, "Transseries for Beginners," http://www.math.ohio-state.edu/~edgar/preprints/trans_begin/
  8. ^ Knuth, D.E. 著、好田順治 訳『超現実数 —数学小説』海鳴社、1978年。 または再訳本松浦俊輔 訳『至福の超現実数』柏書房、2004年。 
  9. ^ Dales, Harold G.; Woodin, W. Hugh (1996), Super-real Fields: Totally Ordered Fields with Additional Structure, Clarendon Press