時系列(じけいれつ、: time series)とは、ある現象の時間的な変化を、連続的に(または一定間隔をおいて不連続に)観測して得られたの系列[1](一連の値)のこと。例えば、統計学信号処理で時間経過に従って計測されるデータ列であり、(通常、一定の)ある時間間隔で測定される。均一間隔では無い場合は点過程と呼ぶ。

概略

編集

時系列解析時系列分析はそのような時系列を解釈するための手法であり、データ列の背後にある理論(なぜそのような時系列になったのか?)を見出すか、予測を行うためのものである。時系列予測は、既知の過去の事象に基づいて将来のモデルを構築し、将来ありうべきデータポイントを測定前に予測することである。例えば、株式の過去の価格推移から将来の価格を予測することなどが挙げられる。

表記

編集

時系列分析では以下のような記述も使われる:

 

これは自然数でインデックスされた時系列 X を表している。

線形モデル

編集

時系列データのモデルには様々な形式がある。古典的に有名な線形モデルとしては、自己回帰移動平均モデル(ARMA)があり、これは自己回帰モデル(autoregressive; AR)と移動平均モデル(moving average; MA)を組み合わせたものである。更に、和分モデル(integrated; I)を組み合わせた自己回帰和分移動平均モデル(ARIMA)がある。これらは過去のデータ列およびノイズに線形に依存している。過去のデータへの非線形な依存は、カオス的時系列を生む可能性があり、興味深い。

状態空間モデル

編集

状態空間モデルとは、状態(観測不可能)を  、観測値(観測可能)を  、システムノイズ(状態遷移のノイズ)を  、観測ノイズを   として、以下で時系列   を表現するモデル。[2][3]

 

このモデルは粒子フィルタモンテカルロ法)を用いて、状態  確率分布を求めることが出来る。関数    には制限はないが、  は観測値から尤度(確率密度または確率質量)を逆算できることが必要。   は実数ベクトルである必要は無く、任意のデータ構造で良い。

状態および観測値が実数の列ベクトル、関数   線形行列の乗法)、システムノイズ   と観測ノイズ  多変量正規分布に従う場合は、以下のようになる。

 

こちらは、状態   の確率分布(多変量正規分布)をカルマンフィルターにて厳密解を求められる。ARMA や ARIMA もこの線形モデルで扱うことが出来る。

手法

編集

時系列データを分析するツールには以下のようなものがある:

産業への応用

編集

任意の時刻と数値の連想配列は時系列とみなすことができる。その場合の時刻は必ずしも一定の間隔である必要はない。例えば、株式や商品先物の相場の履歴情報は、一種の時系列データである。

経営アナリストらは、ここで列挙したようなツールを駆使し、経営に役立てている。例えば、エネルギートレーダーは平年の天候と短期の天気予報に基づいて電力消費量を予測する。

出典

編集
  1. ^ 広辞苑第五版【時系列】
  2. ^ 北川源四郎『時系列解析入門』岩波書店、2005年、209頁。ISBN 4000054554 
  3. ^ 樋口知之『予測にいかす統計モデリングの基礎―ベイズ統計入門から応用まで』講談社、2011年、29頁。ISBN 4061557955 

関連項目

編集

外部リンク

編集