3次元の立方体で同一平面上にある四点でそれらを結ぶ線が全て同一の色であるものが存在している例。線をどのように塗ってもこのような平面が少なくとも1つ現れてしまうのは何次元以上の超立方体か、というのがこの問題の骨子である。
この数は1970年 のロナルド・グラハム 、ブルース・リー・ロスチャイルド による「グラハムの定理」
「
n 次元超立方体 の 2n 個の頂点のそれぞれを互いに全て線 で結ぶ。次に2つの色を用いて連結した線をいずれかの色に塗り分ける。 このとき n が十分大きければ、どのような塗り方をしても、同一平面上にある四点でそれらを結ぶ線が全て同一の色であるものが存在する。
」
に関係する。つまり、n が十分大きければというが、
「
n がいくらより大きければ、この関係は常に成立するか
」
ということである。これがグラハム問題 である。グラハムの定理 より、解の存在は確かだが、具体的な値は現在にいたるまで得られていない。
しかし、この関係がグラハム数 以上の n について成り立つことがグラハム自身によって証明された。つまり、解はグラハム数以下である。
ただし、グラハムらは実際にはこの数を論文では発表しておらず、翌1971年 にグラハム数より小さなグラハム問題の解の上限として、小グラハム数 という数を発表した[ 2] 。その後、マーティン・ガードナー が1977年 にサイエンティフィック・アメリカン でグラハム数を紹介した[ 3] ことによってこの数は広く知られるようになった。
解の上限はのち2014年 にミハイル・ラブロフ らによってさらに小さい数 が示された[ 4] 。
一方、この問題の解の下限(つまりこの数より小さい数では成り立たないことを示した数)としては、グラハムとロスチャイルドは1971年の小グラハム数を示したものと同じ論文中で 6 を与えた。ガードナーは1989年 に著書の中でラムゼー理論 の専門家はこの問題の解を 6 と考えていると紹介し、これが広く信じられてきたが、2003年 にジェフ・エクスー がより良い下限として 11 を[ 5] 、2008年 にはジェローム・バークレー が 13 を与えた[ 6] 。
グラハム数は巨大すぎて、通常の指数では桁数の表現すら事実上不可能である。そのため、次のような特殊な関数を用いる。
まず、クヌースの矢印表記 を使い、x , y を自然数としたとき、演算子「↑」を次のように定義する。
x
↑
y
=
x
y
{\displaystyle x\uparrow y=x^{y}}
さらに「↑↑」を次のように再帰的 に定義する。
x
↑↑
1
=
x
{\displaystyle x\uparrow \uparrow 1=x}
x
↑↑
y
=
x
↑
{
x
↑↑
(
y
−
1
)
}
{\displaystyle x\uparrow \uparrow y=x\uparrow \left\{x\uparrow \uparrow \left(y-1\right)\right\}}
つまり、
x
↑↑
y
=
x
↑
x
↑
⋯
↑
x
⏟
y
=
x
x
⋅
⋅
⋅
x
⏟
y
{\displaystyle x\uparrow \uparrow y=\ \underbrace {x\uparrow x\uparrow \cdots \uparrow x} _{y}=\underbrace {x^{x^{\cdot ^{\cdot ^{\cdot ^{x}}}}}} _{y}}
となる(
⏟
y
{\displaystyle \underbrace {} _{y}}
は、x が y 個あることを表す)。ただし、演算は右から行う。つまり例えば、x ↑x ↑x = x ↑(x ↑x ) である。例を挙げると次のようになる。
3
↑↑
2
=
3
3
=
27
3
↑↑
3
=
3
3
3
=
3
27
=
7625597484987
3
↑↑
4
=
3
3
3
3
=
3
7625597484987
≈
1.258
×
10
3638334640024
3
↑↑
5
=
3
3
3
3
3
=
3
3
7625597484987
≈
3
1.258
×
10
3638334640024
≈
10
6.0022
×
10
3638334640023
{\displaystyle {\begin{aligned}3\uparrow \uparrow 2=&3^{3}=27\\3\uparrow \uparrow 3=&3^{3^{3}}=3^{27}=7625597484987\\3\uparrow \uparrow 4=&3^{3^{3^{3}}}=3^{7625597484987}\\\approx &1.258\times 10^{3638334640024}\\3\uparrow \uparrow 5=&3^{3^{3^{3^{3}}}}=3^{3^{7625597484987}}\\\approx &3^{1.258\times 10^{3638334640024}}\\\approx &10^{6.0022\times 10^{3638334640023}}\end{aligned}}}
同様に「↑↑↑」を次のように再帰的に定義する。
x
↑↑↑
1
=
x
{\displaystyle x\uparrow \uparrow \uparrow 1=x}
x
↑↑↑
y
=
x
↑↑
{
x
↑↑↑
(
y
−
1
)
}
{\displaystyle x\uparrow \uparrow \uparrow y=x\uparrow \uparrow \left\{x\uparrow \uparrow \uparrow (y-1)\right\}}
つまり、
x
↑↑↑
y
=
x
↑↑
x
↑↑
⋯
↑↑
x
⏟
y
copies of
x
{\displaystyle x\uparrow \uparrow \uparrow y=\underbrace {x\uparrow \uparrow x\uparrow \uparrow \cdots \uparrow \uparrow x} _{y{\text{ copies of }}x}}
である。
一般の場合も同様に、「↑…(n 本)…↑」=「↑n 」を次のように定義する。
x
↑
n
1
=
x
{\displaystyle x\uparrow ^{n}1=x}
x
↑
n
y
=
x
↑
n
−
1
{
x
↑
n
(
y
−
1
)
}
{\displaystyle x\uparrow ^{n}y=x\uparrow ^{n-1}\left\{x\uparrow ^{n}\left(y-1\right)\right\}}
これを用いて、関数 G (n ) を
G
(
n
)
=
3
↑
n
3
=
3
↑
⋯
↑
⏟
n
arrows
3
{\displaystyle G(n)=3\uparrow ^{n}3=3\mathbin {\underbrace {\uparrow \cdots \uparrow } _{n\ {\textrm {arrows}}}} 3}
と定義したときの
G
=
G
64
(
4
)
=
G
(
G
(
⋯
G
⏟
64
(
4
)
⋯
)
)
=
3
↑↑↑↑↑↑
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
↑↑↑
⏟
3
3
↑↑↑↑↑↑
⋯
⋯
⋯
⋯
↑↑↑
⏟
3
arrows
⋮
3
↑↑↑↑↑↑
⋯
⋯
↑↑↑
⏟
3
arrows
3
↑↑↑↑
3
arrows
}
64
layers
{\displaystyle {\begin{aligned}G&=G^{64}(4)=\underbrace {G(G(\cdots G} _{64}(4)\cdots ))\\&=\left.{\begin{matrix}3\underbrace {\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \uparrow \uparrow \uparrow } 3\\\qquad \quad 3\underbrace {\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \cdots \cdots \cdots \cdots \uparrow \uparrow \uparrow } 3{\text{ arrows}}\\\vdots \\\qquad \quad 3\underbrace {\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \cdots \cdots \uparrow \uparrow \uparrow } 3{\text{ arrows}}\\3\uparrow \uparrow \uparrow \uparrow 3{\text{ arrows}}\end{matrix}}\right\}64{\text{ layers}}\end{aligned}}}
をグラハム数 といい、その計算法は3の冪乗 やテトレーション からの発展を基本としている。
G (x ) を実際に計算してみると、
G (1) = 3↑3 = 3→3→1 = 3→3 = 33 = 27
G (2) = 3↑↑3 = 3→3→2 = 3↑(3↑3) = 3↑G (1) = 3↑27 = 7625597484987
G (3) = 3↑↑↑3 = 3→3→3 = 3↑↑↑3 = 3↑↑(3↑↑3) = 3↑↑G (2) = 3↑↑7625597484987(トリトリ )
=
3
3
3
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
3
3
3
⏟
高 さ
7625597484987
=
3
3
3
3
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
3
3
3
⏟
高 さ
7625597484986
≈
exp
10
7
,
625
,
597
,
484
,
986
(
1.09902
)
{\displaystyle =\underbrace {3^{3^{3^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{3^{3^{3}}}}}}}}}}}}}}}} _{{\text{高 さ }}7625597484987}=3^{\underbrace {3^{3^{3^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{3^{3^{3}}}}}}}}}}}}}}}} _{{\text{高 さ }}7625597484986}}\approx \exp _{10}^{7,625,597,484,986}(1.09902)}
G (4) = 3↑↑↑↑3 = 3→3→4 =3↑↑↑↑3 = 3↑↑↑G (3)(グラハル )
=
3
↑↑
3
↑↑
⋯
↑↑
3
↑↑
3
⏟
G
(
3
)
copies of
3
{\displaystyle =\underbrace {3\uparrow \uparrow 3\uparrow \uparrow \cdots \uparrow \uparrow 3\uparrow \uparrow 3} _{G(3){\text{ copies of }}3}}
G 2 (4) = G (G (4)) = 3↑…(G (4) 本)…↑3 = 3→3→G (4) = 3↑G (4)-1 3↑G (4)-2 …↑3 3↑2 3↑3↑3
G 3 (4) = G (G 2 (4)) = 3↑…(G 2 (4) 本)…↑3 = 3→3→G 2 (4)
:
:
G 64 (4) = G (G 63 (4)) = 3↑…(G 63 (4) 本)…↑3 = 3→3→G 63 (4) = hyper(3, G 63 (4)+2, 3) = 3↑…((G 63 (4)+1) 本)…↑2 = 3→2→(G 63 (4)+1) = hyper(3, G 63 (4)+3, 2) = hyper(3, G 62 (G (4))+2, 3) = hyper(3, G 62 (3→2→5)+2, 3) = 3↑G 63 (4)-1 3↑G 63 (4)-2 …↑3 3↑2 3↑3↑3
G (2) までは関数電卓 やパソコン でも普通に計算できるが、G (3) ですら既に3の累乗を7兆6,255億回以上繰り返した数であるため、現実世界の現象で例えることなど到底不可能な巨大数になっており、後述するように十進法以下の表記で表すことすら現実的には不可能であるが、16$Pickover の方が遥かに大きい(しかし3↑↑↑4よりは遥かに小さい)。G (4) [ 7] はその十進以下の表記が現実的に不可能な G (3) − 1 の数だけ ↑↑(二重矢印)を繰り返した数であるため、想像を絶する大きさとなっている。
次の段階の G 2 (4) は3と3の間に G (4) 本矢印を置いたものであり、この時点で指数のみの表記も括弧を駆使しても事実上不可能となり、モーザー数
(
2
[
2
[
5
]
]
=
2
[
2
[
4
]
[
4
]
]
=
2
[
2
[
3
]
[
3
]
[
4
]
]
=
2
[
2
[
3
]
258
]
=
2
[
4
[
4
]
[
3
]
253
]
)
{\displaystyle (2\left[2[5]\right]=2\left[2[4][4]\right]=2\left[2[3][3][4]\right]=2\left[2[3]_{258}\right]=2\left[4[4][3]_{253}\right])}
も超える。この操作を63回繰り返した数がグラハム数である。
この大きさをたとえる話として、「グラハム数を十進記数法 を用いて印字しようとした場合(十分に印刷できる面積 を持つ物体があるとして)、この全宇宙にある物質すべてをインク に変えても全く足りない」 というものがある。しかし、その例えを使ったとしてもG(3)にすら満たない。
観測可能な宇宙 の素粒子 の総数は 1080 と考えられているので、このたとえで表せる数は、素粒子1個で1文字を印刷するとしても n 進表記ならせいぜい n 1080 に過ぎない。この数は1 < | n | ≤ 16 のときグラハム数や16$Pickover どころか G (3) と比較しても圧倒的に小さい(G (3) の遥か手前、
3
3
3
3
3
{\displaystyle 3^{3^{3^{3^{3}}}}}
が既におよそ
10
10
3.6
×
10
12
{\displaystyle {10}^{{10}^{3.6\times {10}^{12}}}}
である)。16進表記ではアルファベットの大文字と小文字を区別しないが、Unicode では区別されている。現在Unicodeで使用されている文字の総数は13万7468個であり、未使用領域が全て埋め尽くされると n = 1114112となるが、 n が1億まで拡張されたとしても108×1080 であり、グーゴルプレックス
10
10
100
{\displaystyle {10}^{{10}^{100}}}
にも満たない。
これほど極端な例えですら言い表すことができないほど巨大な数がグラハム数である。宇宙論 で使われた最大の数(複数の宇宙の全質量を1個のブラックホール に圧縮しそれが蒸発した後に、ポアンカレの回帰定理 に従い再びブラックホールができる時間)をaとすると、aですら
10
10
10
10
10
1.1
≈
10
10
10
3883775501690
≈
10
10
10
10
3
2.3
≈
10
10
3
3
3
3
≈
3
↑
2
6
∈
[
(
3
↑
)
5
2.89997
,
(
3
↑
)
6
1.03112
]
{\displaystyle {10}^{{10}^{{10}^{{10}^{{10}^{1.1}}}}}\approx {10}^{{10}^{{10}^{3883775501690}}}\approx {10}^{{10}^{{10}^{{10}^{{3}^{2.3}}}}}\approx {10}^{{10}^{{3}^{{3}^{{3}^{3}}}}}\approx 3\uparrow ^{2}6\in \left[\left(3\uparrow \right)^{5}2.89997,\left(3\uparrow \right)^{6}1.03112\right]}
[ 8] であり、これもグラハム数はおろかG (3) ともとても比較にならない。
レオナルド・サスキンド は宇宙の直径を
10
10
10
122
{\displaystyle 10^{10^{10^{122}}}}
と推定しているが、この値をbとすると、bもaと同様に桁数が大きすぎて単位が考慮されていない。しかし、1辺がbヨタパーセクの立方体に1辺が1プランク長の立方体が隙間なく詰め込まれ、それらの立方体がa千年紀に渡って1プランク時間ごとに1種類の文字を生成し、作業完了時点で完全に重複する文字が1種類も存在しない場合ですら、生成された文字をc種類とし、c進法でc-1を表現する文字をc個並べた数をdとした場合、dはグラハム数はおろかG (3) ともとても比較にならない。
なお、強いて「グラハム数を十進法で表した時の桁数」を考えるなら、log10 Gとなるが、Gは十分な巨大数なので、この場合にあってはlog10 という関数で厳密には元の数より小さくなるものの、巨大数としては無視できるレベルでしかなく、近似に吸収されてしまう。すなわち、log10 G≒Gである。
近年は巨大数の研究・開発がより進み、現在ではグラハム数を遥かに上回る数 も多数登場していて、例えばコンウェイのチェーン表記 を用いて"
3
→
3
→
3
→
3
{\displaystyle 3\rightarrow 3\rightarrow 3\rightarrow 3}
"(コンウェイのテトラトリ と呼ばれる数)などと書くだけでグラハム数よりも大きな数を表現可能である。
チェーン表記を用いても G = 3→2→(G 63 (4) + 1) を簡潔に表すことはできないが、次の不等式が成立する。
3
→
3
→
64
→
2
<
G
<
3
→
3
→
65
→
2
{\displaystyle 3\rightarrow 3\rightarrow 64\rightarrow 2<G<3\rightarrow 3\rightarrow 65\rightarrow 2}
先述の通り、グラハム数自体は桁数を指数で表現することすら不可能なほど大きく、スーパーコンピュータ でもG (3)の計算すら望めないが、末尾の数字を計算する方法は確立しており、ある程度の桁数は判明している。
3→2→(G 63 (4) + 1) を十進法で表したときの末尾10桁は 2,464,195,387 であり、暗黒通信団 が末尾100万桁を記した書籍も出版し[ 9] 、その後、暗黒通信団のウェブサイトで末尾1,600万桁を記したPDF形式のファイルも公開している[ 10] 。
グラハム数を表すにはいくつか等価な表現がある。
3
↑
G
63
(
4
)
+
1
2
{\displaystyle 3\uparrow ^{G^{63}(4)+1}2}
,
3
↑
G
63
(
4
)
−
1
3
↑
G
63
(
4
)
−
1
3
{\displaystyle 3\uparrow ^{G^{63}(4)-1}3\uparrow ^{G^{63}(4)-1}3}
,
3
↑
G
62
(
3
↑
5
2
)
+
1
2
{\displaystyle 3\uparrow ^{G^{62}\left(3\uparrow ^{5}2\right)+1}2}
,
3
↑
G
62
(
3
↑↑↑↑↑
2
)
+
1
2
{\displaystyle 3\uparrow ^{G^{62}\left(3\uparrow \uparrow \uparrow \uparrow \uparrow 2\right)+1}2}
,
3
↑
G
63
(
4
)
−
1
3
↑
G
63
(
4
)
−
2
⋯
3
↑
5
3
↑
4
3
↑
3
3
↑
2
3
↑
1
[
3
×
{
3
+
(
3
+
3
)
}
]
{\displaystyle 3\uparrow ^{G^{63}(4)-1}3\uparrow ^{G^{63}(4)-2}\cdots 3\uparrow ^{5}3\uparrow ^{4}3\uparrow ^{3}3\uparrow ^{2}3\uparrow ^{1}\left[3\times \left\{3+(3+3)\right\}\right]}
,
3
↑
G
63
(
4
)
−
1
3
↑
G
63
(
4
)
−
2
⋯
3
↑
5
3
↑
4
3
↑
3
3
↑
2
3
↑
1
{
3
×
(
3
+
6
)
}
{\displaystyle 3\uparrow ^{G^{63}(4)-1}3\uparrow ^{G^{63}(4)-2}\cdots 3\uparrow ^{5}3\uparrow ^{4}3\uparrow ^{3}3\uparrow ^{2}3\uparrow ^{1}\left\{3\times \left(3+6\right)\right\}}
,
3
↑
G
63
(
4
)
−
1
3
↑
G
63
(
4
)
−
2
⋯
3
↑
5
3
↑
4
3
↑
3
3
↑
2
3
3
↑
1
(
3
+
6
)
{\displaystyle 3\uparrow ^{G^{63}(4)-1}3\uparrow ^{G^{63}(4)-2}\cdots 3\uparrow ^{5}3\uparrow ^{4}3\uparrow ^{3}3\uparrow ^{2}3^{3}\uparrow ^{1}\left(3+6\right)}
,
3
↑
G
63
(
4
)
−
1
3
↑
G
63
(
4
)
−
2
⋯
3
↑
5
3
↑
4
3
↑
3
3
↑
2
27
↑
1
(
3
+
6
)
{\displaystyle 3\uparrow ^{G^{63}(4)-1}3\uparrow ^{G^{63}(4)-2}\cdots 3\uparrow ^{5}3\uparrow ^{4}3\uparrow ^{3}3\uparrow ^{2}27\uparrow ^{1}\left(3+6\right)}
,
3
↑
G
63
(
4
)
−
1
3
↑
G
63
(
4
)
−
2
⋯
3
↑
5
3
↑
4
3
↑
3
3
↑
2
27
↑
9
{\displaystyle 3\uparrow ^{G^{63}(4)-1}3\uparrow ^{G^{63}(4)-2}\cdots 3\uparrow ^{5}3\uparrow ^{4}3\uparrow ^{3}3\uparrow ^{2}27\uparrow 9}
,
3
↑
G
63
(
4
)
−
1
3
↑
G
63
(
4
)
−
2
⋯
3
↑
5
3
↑
4
3
↑
3
3
↑
2
3
↑
1
27
{\displaystyle 3\uparrow ^{G^{63}(4)-1}3\uparrow ^{G^{63}(4)-2}\cdots 3\uparrow ^{5}3\uparrow ^{4}3\uparrow ^{3}3\uparrow ^{2}3\uparrow ^{1}27}
,
3
↑
G
63
(
4
)
−
1
3
↑
G
63
(
4
)
−
2
⋯
3
↑
5
3
↑
4
3
↑
3
3
↑
2
3
27
{\displaystyle 3\uparrow ^{G^{63}(4)-1}3\uparrow ^{G^{63}(4)-2}\cdots 3\uparrow ^{5}3\uparrow ^{4}3\uparrow ^{3}3\uparrow ^{2}3^{27}}
,
3
↑
G
63
(
4
)
−
1
3
↑
G
63
(
4
)
−
2
⋯
3
↑
5
3
↑
4
3
↑
3
3
↑
2
7625597484987
{\displaystyle 3\uparrow ^{G^{63}(4)-1}3\uparrow ^{G^{63}(4)-2}\cdots 3\uparrow ^{5}3\uparrow ^{4}3\uparrow ^{3}3\uparrow ^{2}7625597484987}
,
3
↑
G
63
(
4
)
−
1
3
↑
G
63
(
4
)
−
2
⋯
3
↑
6
3
↑
5
3
↑
4
3
↑
3
Cg
(
3
)
{\displaystyle 3\uparrow ^{G^{63}(4)-1}3\uparrow ^{G^{63}(4)-2}\cdots 3\uparrow ^{6}3\uparrow ^{5}3\uparrow ^{4}3\uparrow ^{3}\operatorname {Cg} \left(3\right)}
(Cg はCG関数 ,
Cg
(
n
)
=
n
→
n
→
n
→
⋯
→
n
→
n
→
n
⏟
長さ
n
{\displaystyle \operatorname {Cg} (n)=\underbrace {n\rightarrow n\rightarrow n\rightarrow \dots \rightarrow n\rightarrow n\rightarrow n} _{{\text{長さ}}n}}
)
3
↑
G
63
(
4
)
−
1
(
3
↑
G
63
(
4
)
2
)
,
3
↑
G
63
(
4
)
−
2
3
↑
G
63
(
4
)
−
1
(
3
↑
G
63
(
4
)
2
−
1
)
,
3
↑
(
3
↑
2
(
3
↑
3
(
3
↑
4
(
⋯
3
↑
G
63
(
4
)
−
2
(
3
↑
G
63
(
4
)
−
1
(
3
↑
G
63
(
4
)
−
1
3
−
1
)
−
1
)
⋯
−
1
)
−
1
)
−
1
)
)
,
3
↑
(
3
↑
2
(
3
↑
3
(
3
↑
4
(
⋯
3
↑
G
63
(
4
)
−
2
(
3
↑
G
63
(
4
)
−
1
(
G
(
G
63
(
4
)
−
1
)
−
1
)
−
1
)
⋯
−
1
)
−
1
)
−
1
)
)
,
3
3
↑
2
(
3
↑
3
(
3
↑
4
(
⋯
3
↑
G
63
(
4
)
−
2
(
3
↑
G
63
(
4
)
−
1
(
G
(
G
63
(
4
)
−
1
)
−
1
)
−
1
)
⋯
−
1
)
−
1
)
−
1
)
(
∵
G
(
n
)
=
3
↑
n
3
=
3
↑
n
−
1
3
↑
n
−
1
3
=
3
↑
n
−
1
G
(
n
−
1
)
=
3
↑
n
−
2
3
↑
n
−
2
3
↑
n
−
2
3
↑
n
−
2
3
↑
n
−
2
3
↑
n
−
2
⋯
↑
n
−
2
3
↑
n
−
2
3
↑
n
−
2
3
⏟
G
(
n
−
1
)
個の
3
=
3
↑
n
−
2
3
↑
n
−
2
3
↑
n
−
2
3
↑
n
−
2
3
↑
n
−
2
3
↑
n
−
2
⋯
↑
n
−
2
3
↑
n
−
2
3
↑
n
−
2
3
⏟
(
G
(
n
−
1
)
−
1
)
個の
3
=
3
↑
n
−
2
(
3
↑
n
−
1
(
G
(
n
−
1
)
−
1
)
)
)
{\displaystyle {\begin{aligned}&3\uparrow ^{G^{63}(4)-1}\left(3\uparrow ^{G^{63}(4)}2\right),\\&3\uparrow ^{G^{63}(4)-2}3\uparrow ^{G^{63}(4)-1}\left(3\uparrow ^{G^{63}(4)}2-1\right),\\&3\uparrow \left(3\uparrow ^{2}\left(3\uparrow ^{3}\left(3\uparrow ^{4}\left(\cdots 3\uparrow ^{G^{63}(4)-2}\left(3\uparrow ^{G^{63}(4)-1}\left(3\uparrow ^{G^{63}(4)-1}3-1\right)-1\right)\cdots -1\right)-1\right)-1\right)\right),\\&3\uparrow \left(3\uparrow ^{2}\left(3\uparrow ^{3}\left(3\uparrow ^{4}\left(\cdots 3\uparrow ^{G^{63}(4)-2}\left(3\uparrow ^{G^{63}(4)-1}\left(G\left(G^{63}(4)-1\right)-1\right)-1\right)\cdots -1\right)-1\right)-1\right)\right),\\&3^{3\uparrow ^{2}\left(3\uparrow ^{3}\left(3\uparrow ^{4}\left(\cdots 3\uparrow ^{G^{63}(4)-2}\left(3\uparrow ^{G^{63}(4)-1}\left(G\left(G^{63}(4)-1\right)-1\right)-1\right)\cdots -1\right)-1\right)-1\right)}\\&\left({\begin{aligned}\because G(n)=3\uparrow ^{n}3=&3\uparrow ^{n-1}3\uparrow ^{n-1}3=3\uparrow ^{n-1}G(n-1)\\=&\underbrace {3\uparrow ^{n-2}3\uparrow ^{n-2}3\uparrow ^{n-2}3\uparrow ^{n-2}3\uparrow ^{n-2}3\uparrow ^{n-2}\cdots \uparrow ^{n-2}3\uparrow ^{n-2}3\uparrow ^{n-2}3} _{G(n-1){\text{個の}}3}\\=&3\uparrow ^{n-2}\underbrace {3\uparrow ^{n-2}3\uparrow ^{n-2}3\uparrow ^{n-2}3\uparrow ^{n-2}3\uparrow ^{n-2}\cdots \uparrow ^{n-2}3\uparrow ^{n-2}3\uparrow ^{n-2}3} _{\left(G(n-1)-1\right){\text{個の}}3}\\=&3\uparrow ^{n-2}\left(3\uparrow ^{n-1}\left(G(n-1)-1\right)\right)\end{aligned}}\right)\end{aligned}}}
3
→
2
→
(
G
63
(
4
)
+
1
)
,
3
→
2
→
(
G
62
(
3
→
2
→
(
5
)
)
+
1
)
{\displaystyle 3\rightarrow 2\rightarrow \left(G^{63}(4)+1\right),~3\rightarrow 2\rightarrow \left(G^{62}\left(3\rightarrow 2\rightarrow (5)\right)+1\right)}
3
[
G
63
(
3
[
6
]
3
)
+
2
]
3
,
3
[
G
63
(
3
[
6
]
3
)
+
3
]
2
,
3
[
G
63
(
3
[
7
]
2
)
+
2
]
3
,
3
[
G
63
(
3
[
7
]
2
)
+
3
]
2
,
H
G
63
(
H
6
(
3
,
3
)
)
+
2
(
3
,
3
)
,
H
G
63
(
H
6
(
3
,
3
)
)
+
3
(
3
,
2
)
,
H
G
63
(
H
7
(
3
,
2
)
)
+
2
(
3
,
3
)
,
H
G
63
(
H
7
(
3
,
2
)
)
+
3
(
3
,
2
)
{\displaystyle 3\left[G^{63}(3[6]3)+2\right]3,~3\left[G^{63}(3[6]3)+3\right]2,~3\left[G^{63}(3[7]2)+2\right]3,~3\left[G^{63}(3[7]2)+3\right]2,~H_{G^{63}(H_{6}(3,3))+2}(3,3),~H_{G^{63}(H_{6}(3,3))+3}(3,2),~H_{G^{63}(H_{7}(3,2))+2}(3,3),~H_{G^{63}(H_{7}(3,2))+3}(3,2)}
hyper
(
3
,
G
63
(
hyper
(
3
,
6
,
3
)
)
+
2
,
3
)
,
hyper
(
3
,
G
63
(
hyper
(
3
,
6
,
3
)
)
+
3
,
2
)
,
hyper
(
3
,
G
63
(
hyper
(
3
,
7
,
2
)
)
+
2
,
3
)
,
hyper
(
3
,
G
63
(
hyper
(
3
,
7
,
2
)
)
+
3
,
2
)
{\displaystyle \operatorname {hyper} (3,G^{63}(\operatorname {hyper} (3,6,3))+2,3),~\operatorname {hyper} (3,G^{63}(\operatorname {hyper} (3,6,3))+3,2),~\operatorname {hyper} (3,G^{63}(\operatorname {hyper} (3,7,2))+2,3),~\operatorname {hyper} (3,G^{63}(\operatorname {hyper} (3,7,2))+3,2)}
グラハムとロートシルトは1971年 に、より小さい上限として小グラハム数 (Little Graham) を示した。この数は関数 F (n ) を
F
(
n
)
=
2
↑
n
3
=
2
↑
⋯
↑
⏟
n
3
=
2
→
3
→
n
{\displaystyle F(n)=2\uparrow ^{n}3=2\underbrace {\uparrow \cdots \uparrow } _{n}3=2\rightarrow 3\rightarrow n}
と定義したときの
F
:=
F
7
(
12
)
=
F
(
F
(
F
(
F
(
F
(
F
(
F
(
12
)
)
)
)
)
)
)
=
2
→
3
→
(
2
→
3
→
(
2
→
3
→
(
2
→
3
→
(
2
→
3
→
(
2
→
3
→
(
2
→
3
→
12
)
)
)
)
)
)
=
2
↑
⋯
⋯
⋯
⋯
↑
⏟
3
2
↑
⋯
⋯
⋯
↑
⏟
3
⋮
⏟
2
↑
⋯
⋯
⋯
↑
⏟
3
2
↑
12
3
}
7
layers
=
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
12
3
3
3
3
3
3
3
=
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑↑↑↑↑↑↑↑↑↑↑↑
3
3
3
3
3
3
3
=
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
→
3
→
12
3
3
3
3
3
3
=
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
hyper
(
2
,
14
,
3
)
3
3
3
3
3
3
{\displaystyle {\begin{aligned}F&:=F^{7}(12)=F\left(F\left(F\left(F\left(F\left(F\left(F(12)\right)\right)\right)\right)\right)\right)\\&=2\rightarrow 3\rightarrow \left(2\rightarrow 3\rightarrow \left(2\rightarrow 3\rightarrow \left(2\rightarrow 3\rightarrow \left(2\rightarrow 3\rightarrow \left(2\rightarrow 3\rightarrow \left(2\rightarrow 3\rightarrow 12\right)\right)\right)\right)\right)\right)\\&=\left.{\begin{matrix}2\underbrace {\uparrow \cdots \cdots \cdots \cdots \uparrow } 3\\2\underbrace {\uparrow \cdots \cdots \cdots \uparrow } 3\\\underbrace {\qquad \;\;\vdots \qquad \;\;} \\2\underbrace {\uparrow \cdots \cdots \cdots \uparrow } 3\\2\uparrow ^{12}3\end{matrix}}\right\}7{\text{ layers}}=2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{12}3}3}3}3}3}3}3=2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow 3}3}3}3}3}3}3\\&=2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\rightarrow 3\rightarrow 12}3}3}3}3}3}3\\&=2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{\operatorname {hyper} ({2,14,3})}3}3}3}3}3}3\end{aligned}}}
である。これはグラハム数よりは遥かに小さいが、それでもなお非常に大きい数である。
F (x ) を実際に計算してみると、
F (1) = 2↑3 = 2→3→1 = 2→3 = 23 = 8
F (2) = 2↑↑3 = 2→3→2 = 2↑(2↑2) = 2↑4 = 16
F (3) = 2↑↑↑3 = 2→3→3 = 2↑↑(2↑↑2) = 2↑↑4 = 2222 = 2↑F (2) = 65536
F (4) = 2↑↑↑↑3 = 2→3→4 = 2↑↑↑(2↑↑↑2) = 2↑↑↑4 = 2↑↑2↑↑2↑↑2 = 2↑↑F (3) = 2↑↑65536
=
2
2
2
⋅
⋅
⋅
⋅
⋅
⋅
⋅
2
2
2
⏟
65536
{\displaystyle =\underbrace {2^{2^{2^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{2^{2^{2}}}}}}}}}}}}} _{65536}}
F (5) = 2↑↑↑↑↑3 = 2→3→5 = 2↑↑↑↑2↑↑↑↑2 = 2↑↑↑↑4 = 2↑↑↑2↑↑↑2↑↑↑2 = 2↑↑↑F (4)
=
2
↑↑
2
↑↑
⋯
↑↑
2
↑↑
2
⏟
F
(
4
)
copies of
2
{\displaystyle =\underbrace {2\uparrow \uparrow 2\uparrow \uparrow \cdots \uparrow \uparrow 2\uparrow \uparrow 2} _{F(4){\text{ copies of }}2}}
:
:
F (12) = 2↑12 3 = 2→3→12 = 2↑11 2↑11 2 = 2↑11 4 = 2↑10 2↑10 2↑10 2 = 2↑10 F (11)
=
2
↑
9
2
↑
9
⋯
↑
9
2
↑
9
2
⏟
F
(
11
)
copies of
2
{\displaystyle =\underbrace {2\uparrow ^{9}2\uparrow ^{9}\cdots \uparrow ^{9}2\uparrow ^{9}2} _{F(11){\text{ copies of }}2}}
F 2 (12) = F (F (12)) = 2↑…(F (12) 本)…↑3 = 2→3→F (12)
F 3 (12) = 2↑…(F 2 (12) 本)…↑3 = 2→3→F 2 (12)
:
:
F 7 (12) = 2↑…(F 6 (12) 本)…↑3 = 2→3→F 6 (12)
F (3) までは関数電卓 やパソコン でも普通に計算できるが、F (4) ですら十進法以下の表記で表すことすら現実的には不可能である(ただし9$Pickover よりは遥かに小さい)。同様の操作を繰り返したF (12)も同様に巨大数である。
次の段階の F 2 (12) は2と3の間に F (12) 本矢印を置いたものであり、この時点で指数のみの表記も括弧を駆使しても事実上不可能となり、モーザー数 (
2
[
2
[
5
]
]
=
2
[
2
[
4
]
[
4
]
]
=
2
[
2
[
3
]
[
3
]
[
4
]
]
=
2
[
2
[
3
]
258
]
=
2
[
4
[
4
]
[
3
]
253
]
{\displaystyle 2\left[2[5]\right]=2\left[2[4][4]\right]=2\left[2[3][3][4]\right]=2\left[2[3]_{258}\right]=2\left[4[4][3]_{253}\right]}
) も超える。この操作を6回繰り返した数が小グラハム数である。
グラハム数の大きさの議論と同様に、log10 F≒Fと見做せる。
チェーン表記を用いても F = F 7 (12) を簡潔に表すことはできないが、次の不等式が成立する。
3
→
2
→
8
→
2
<
F
<
3
→
2
→
9
→
2
{\displaystyle 3\rightarrow 2\rightarrow 8\rightarrow 2<F<3\rightarrow 2\rightarrow 9\rightarrow 2}
小グラハム数もグラハム数と同様に末尾の数字を計算する方法は確立しており、ある程度の桁数は判明している。
2→3→F 5 (2→3→12) を十進法で表したときの末尾3桁は 736 である。
小グラハム数を表すにはいくつか等価な表現がある。
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
3
{\displaystyle 2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3}3}
,
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
1
4
{\displaystyle 2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-1}4}
,
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
2
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
1
3
)
{\displaystyle 2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-2}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-1}3\right)}
,
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
2
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
3
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
4
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
5
(
⋯
2
↑
6
(
2
↑
5
(
2
↑
4
(
2
↑
3
(
2
↑
2
(
2
↑
(
2
⋅
(
2
+
(
2
+
4
)
)
)
)
)
)
)
)
⋯
)
)
)
)
{\displaystyle 2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-2}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-3}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-4}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-5}\left(\cdots 2\uparrow ^{6}\left(2\uparrow ^{5}\left(2\uparrow ^{4}\left(2\uparrow ^{3}\left(2\uparrow ^{2}\left(2\uparrow \left(2\cdot \left(2+\left(2+4\right)\right)\right)\right)\right)\right)\right)\right)\cdots \right)\right)\right)\right)}
,
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
2
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
3
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
4
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
5
(
⋯
2
↑
6
(
2
↑
5
(
2
↑
4
(
2
↑
3
(
2
↑
2
(
(
2
↑
2
)
↑
(
2
+
(
2
+
4
)
)
)
)
)
)
)
⋯
)
)
)
)
{\displaystyle 2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-2}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-3}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-4}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-5}\left(\cdots 2\uparrow ^{6}\left(2\uparrow ^{5}\left(2\uparrow ^{4}\left(2\uparrow ^{3}\left(2\uparrow ^{2}\left(\left(2\uparrow 2\right)\uparrow \left(2+\left(2+4\right)\right)\right)\right)\right)\right)\right)\cdots \right)\right)\right)\right)}
,
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
2
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
3
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
4
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
5
(
⋯
2
↑
6
(
2
↑
5
(
2
↑
4
(
2
↑
3
(
2
↑
2
(
4
↑
(
2
+
(
2
+
4
)
)
)
)
)
)
)
⋯
)
)
)
)
{\displaystyle 2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-2}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-3}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-4}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-5}\left(\cdots 2\uparrow ^{6}\left(2\uparrow ^{5}\left(2\uparrow ^{4}\left(2\uparrow ^{3}\left(2\uparrow ^{2}\left(4\uparrow \left(2+\left(2+4\right)\right)\right)\right)\right)\right)\right)\cdots \right)\right)\right)\right)}
,
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
2
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
3
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
4
(
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
2
↑
11
4
3
3
3
3
3
−
5
(
⋯
2
↑
6
(
2
↑
5
(
2
↑
4
(
2
↑
3
(
2
↑
2
(
4
↑
8
)
)
)
)
)
⋯
)
)
)
)
{\displaystyle 2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-2}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-3}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-4}\left(2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{2\uparrow ^{11}4}3}3}3}3}3-5}\left(\cdots 2\uparrow ^{6}\left(2\uparrow ^{5}\left(2\uparrow ^{4}\left(2\uparrow ^{3}\left(2\uparrow ^{2}\left(4\uparrow 8\right)\right)\right)\right)\right)\cdots \right)\right)\right)\right)}
2
→
3
→
(
2
→
3
→
(
2
→
3
→
(
2
→
3
→
(
2
→
3
→
(
2
→
3
→
(
2
→
4
→
11
)
)
)
)
)
)
{\displaystyle 2\rightarrow 3\rightarrow \left(2\rightarrow 3\rightarrow \left(2\rightarrow 3\rightarrow \left(2\rightarrow 3\rightarrow \left(2\rightarrow 3\rightarrow \left(2\rightarrow 3\rightarrow \left(2\rightarrow 4\rightarrow 11\right)\right)\right)\right)\right)\right)}
これはどちらも
2
→
3
→
12
=
2
→
4
→
11
{\displaystyle 2\rightarrow 3\rightarrow 12=2\rightarrow 4\rightarrow 11}
を根拠としている。
ラブロフらは2014年 に、多次元三目並べ に関するヘイルズ=ジュエットの定理 (英語版 ) を応用し、より小さい上限として
N
′
=
2
↑↑↑
6
=
2
→
6
→
3
=
hyper
(
2
,
5
,
6
)
{\displaystyle N'=2\uparrow \uparrow \uparrow 6=2\rightarrow 6\rightarrow 3=\operatorname {hyper} (2,5,6)}
を示した。これでもなお十進表記が事実上不可能なほど非常に大きい数であるが、グラハム数および小グラハム数と比較すると格段に小さい数である。これによりグラハム問題の解 n は
13
≤
n
≤
2
↑↑↑
6
=
2
→
6
→
3
=
hyper
(
2
,
5
,
6
)
=
2
↑↑
2
↑↑
2
↑↑
2
↑↑
2
↑↑
2
=
2
↑↑
2
↑↑
2
↑↑
2
↑↑
4
=
2
↑↑
2
↑↑
2
↑↑
65536
=
2
2
2
2
2
2
=
4
2
2
2
2
=
2
2
2
2
2
2
2
=
65536
2
2
2
{\displaystyle {\begin{aligned}13\leq n\leq 2\uparrow \uparrow \uparrow 6=&2\rightarrow 6\rightarrow 3=\operatorname {hyper} (2,5,6)\\=&2\uparrow \uparrow 2\uparrow \uparrow 2\uparrow \uparrow 2\uparrow \uparrow 2\uparrow \uparrow 2=2\uparrow \uparrow 2\uparrow \uparrow 2\uparrow \uparrow 2\uparrow \uparrow 4=2\uparrow \uparrow 2\uparrow \uparrow 2\uparrow \uparrow 65536\\=&{}^{{}^{{}^{{}^{{}^{2}{2}}{2}}{2}}{2}}{2}={}^{{}^{{}^{{}^{4}{2}}{2}}{2}}{2}={}^{{}^{{}^{{2}^{{2}^{{2}^{2}}}}{2}}{2}}{2}={}^{{}^{{}^{65536}{2}}{2}}{2}\end{aligned}}}
の範囲にあることになる。